IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v216y2023ics0960148123008121.html
   My bibliography  Save this article

Implementation of active and passive control strategies for power generation in a solar chimney power plant: A technical evaluation of Manzanares prototype

Author

Listed:
  • Torkfar, Arman
  • Arefian, Amir
  • Hosseini-Abardeh, Reza
  • Bahrami, Mohsen

Abstract

Nowadays, it is necessary to develop sustainable energy suppliers according to the concerning environmental issues. Solar energy is one of the appropriate solutions. Solar Chimney Power Plant (SCPP) represents a viable form of solar thermal electricity generation technology. Temporal variations in the driving factors of the plant, especially solar radiation, cause significant fluctuations in output power. This study evaluates active and passive control strategies for achieving more stable power generation in SCPP using Fuzzy Logic Control (FLC) and Thermal Energy Storage (TES) systems. The governing equations for performance modeling have been solved by a developed MATLAB code and validated with experimental data from the Manzanares prototype. Using TES reduced output power fluctuations and showed daily electrical energy generation of 331.9, 314.3, and 308.7 kWh for sand, limestone soil, and water-filled bags, respectively. Implementing an active control strategy with the FLC system alone provided a 25 and 30-kW baseload generation in the mid-hours of the day. Finally, integrating the FLC and TES systems in a hybrid control strategy continued a base load power generation of 12 and 16 kW up to 4 h after sunset, utilizing limestone soil and water-filled bags, respectively.

Suggested Citation

  • Torkfar, Arman & Arefian, Amir & Hosseini-Abardeh, Reza & Bahrami, Mohsen, 2023. "Implementation of active and passive control strategies for power generation in a solar chimney power plant: A technical evaluation of Manzanares prototype," Renewable Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123008121
    DOI: 10.1016/j.renene.2023.118912
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123008121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.118912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehdipour, Ramin & Baniamerian, Zahra & Golzardi, Sajad & Murshed, S.M. Sohel, 2020. "Geometry modification of solar collector to improve performance of solar chimneys," Renewable Energy, Elsevier, vol. 162(C), pages 160-170.
    2. Muhammed, Hardi A. & Atrooshi, Soorkeu A., 2019. "Modeling solar chimney for geometry optimization," Renewable Energy, Elsevier, vol. 138(C), pages 212-223.
    3. Sedighi, Ali Asghar & Deldoost, Zeynab & Karambasti, Bahram Mahjoob, 2020. "Effect of thermal energy storage layer porosity on performance of solar chimney power plant considering turbine pressure drop," Energy, Elsevier, vol. 194(C).
    4. Luk, P.C.K. & Low, K.C. & Sayiah, A., 1999. "GA-based fuzzy logic control of a solar power plant using distributed collector fields," Renewable Energy, Elsevier, vol. 16(1), pages 765-768.
    5. Abedi, Mahyar & Tan, Xu & Klausner, James F. & Bénard, Andre, 2023. "Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification–dehumidification systems," Renewable Energy, Elsevier, vol. 202(C), pages 88-102.
    6. Kebabsa, Hakim & Lounici, Mohand Said & Lebbi, Mohamed & Daimallah, Ahmed, 2020. "Thermo-hydrodynamic behavior of an innovative solar chimney," Renewable Energy, Elsevier, vol. 145(C), pages 2074-2090.
    7. Hurtado, F.J. & Kaiser, A.S. & Zamora, B., 2012. "Evaluation of the influence of soil thermal inertia on the performance of a solar chimney power plant," Energy, Elsevier, vol. 47(1), pages 213-224.
    8. Erdem Cuce & Pinar Mert Cuce & Salvatore Carlucci & Harun Sen & Kumarasamy Sudhakar & Md. Hasanuzzaman & Reza Daneshazarian, 2022. "Solar Chimney Power Plants: A Review of the Concepts, Designs and Performances," Sustainability, MDPI, vol. 14(3), pages 1-66, January.
    9. Al-Kayiem, Hussain H. & Aja, Ogboo Chikere, 2016. "Historic and recent progress in solar chimney power plant enhancing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1269-1292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Ajeet Pratap & Singh, Jaydeep & Kumar, Amit & Singh, O.P., 2023. "Vertical limit reduction of chimney in solar power plant," Renewable Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fallah, Seyyed Hossein & Valipour, Mohammad Sadegh, 2022. "Numerical investigation of a small scale sloped solar chimney power plant," Renewable Energy, Elsevier, vol. 183(C), pages 1-11.
    2. Singh, Ajeet Pratap & Kumar, Amit & Akshayveer, & Singh, O.P., 2021. "A novel concept of integrating bell-mouth inlet in converging-diverging solar chimney power plant," Renewable Energy, Elsevier, vol. 169(C), pages 318-334.
    3. Arefian, Amir & Hosseini-Abardeh, Reza & Rahimi-Larki, Mohsen & Torkfar, Arman & Sarlak, Hamid, 2024. "A comprehensive analysis of time-dependent performance of a solar chimney power plant equipped with a thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Salari, Ali & Shakibi, Hamid & Alimohammadi, Mahdieh & Naghdbishi, Ali & Goodarzi, Shadi, 2023. "A machine learning approach to optimize the performance of a combined solar chimney-photovoltaic thermal power plant," Renewable Energy, Elsevier, vol. 212(C), pages 717-737.
    5. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    6. Rashidi, Saman & Esfahani, Javad Abolfazli & Rashidi, Abbas, 2017. "A review on the applications of porous materials in solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1198-1210.
    7. Varun Pratap Singh & Gaurav Dwivedi, 2023. "Technical Analysis of a Large-Scale Solar Updraft Tower Power Plant," Energies, MDPI, vol. 16(1), pages 1-28, January.
    8. RahimiLarki, Mohsen & Abardeh, Reza Hosseini & Rahimzadeh, Hassan & Sarlak, Hamid, 2021. "Performance analysis of a laboratory-scale tilted solar chimney system exposed to ambient crosswind," Renewable Energy, Elsevier, vol. 164(C), pages 1156-1170.
    9. Xie, Mingxi & Jia, Teng & Dai, Yanjun, 2022. "Hybrid photovoltaic/solar chimney power plant combined with agriculture: The transformation of a decommissioned coal-fired power plant," Renewable Energy, Elsevier, vol. 191(C), pages 1-16.
    10. Aziz, Mohamed A. & Elsayed, Ahmed M., 2022. "Thermofluid effects of solar chimney geometry on performance parameters," Renewable Energy, Elsevier, vol. 200(C), pages 674-693.
    11. Weli, Rizgar Bakr & Atrooshi, Soorkeu A. & Schwarze, Ruediger, 2021. "Investigation of the performance parameters of a sloped collector solar chimney model – An adaptation for the North of Iraq," Renewable Energy, Elsevier, vol. 176(C), pages 504-519.
    12. Pinar Mert Cuce & Erdem Cuce & Saad Alshahrani & Shaik Saboor & Harun Sen & Ibham Veza & C. Ahamed Saleel, 2022. "Performance Evaluation of Solar Chimney Power Plants with Bayburt Stone and Basalt on the Ground as Natural Energy Storage Material," Sustainability, MDPI, vol. 14(17), pages 1-14, September.
    13. Islam Elsayed & Yoshiki Nishi, 2018. "A Feasibility Study on Power Generation from Solar Thermal Wind Tower: Inclusive Impact Assessment Concerning Environmental and Economic Costs," Energies, MDPI, vol. 11(11), pages 1-18, November.
    14. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    15. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant," Energy, Elsevier, vol. 120(C), pages 1-11.
    16. Mostafa A. Rushdi & Shigeo Yoshida & Koichi Watanabe & Yuji Ohya & Amr Ismaiel, 2024. "Deep Learning Approaches for Power Prediction in Wind–Solar Tower Systems," Energies, MDPI, vol. 17(15), pages 1-23, July.
    17. Murena, Fabio & Gaggiano, Imma & Mele, Benedetto, 2022. "Fluid dynamic performances of a solar chimney plant: Analysis of experimental data and CFD modelling," Energy, Elsevier, vol. 249(C).
    18. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation," Applied Energy, Elsevier, vol. 204(C), pages 948-957.
    19. Arijit A. Ganguli & Sagar S. Deshpande & Aniruddha B. Pandit, 2021. "CFD Simulations for Performance Enhancement of a Solar Chimney Power Plant (SCPP) and Techno-Economic Feasibility for a 5 MW SCPP in an Indian Context," Energies, MDPI, vol. 14(11), pages 1-28, June.
    20. Lukasz Lasek & Anna Zylka & Jaroslaw Krzywanski & Dorian Skrobek & Karol Sztekler & Wojciech Nowak, 2023. "Review of Fluidized Bed Technology Application for Adsorption Cooling and Desalination Systems," Energies, MDPI, vol. 16(21), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123008121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.