IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp497-507.html
   My bibliography  Save this article

Examination of inorganic gaseous species and condensed phases during coconut husk combustion based on thermodynamic equilibrium predictions

Author

Listed:
  • Jerzak, Wojciech
  • Kuźnia, Monika

Abstract

Multi-component thermodynamic equilibrium predictions of coconut husk combustion products were performed in this work. The calculation results showed that the concentration of the chlorine species in the flue gas and ash were clearly influenced by the combustion temperature. At temperatures below 820 °C the highest concentration was HCl(g), and above 820 °C was KCl(g). Chlorine species were also observed in ash, as KCl–NaCl–RbCl solid solution (when the combustion temperature was lower than 700 °C), and KCl–NaCl–K2SO4–Na2SO4 liquid solution (in the range of 600–960 °C). At low combustion temperatures (600 °C), chlorine retention in solid ash was the most effective. Speciation of inorganic gaseous species and condensed phases were investigated also during flue gas cooling from 1000 to 200 °C. Major condensed phase compositions were dominated by alkali metal salts in both solid and liquid phase states. In addition, the Gibbs energy of substance formation, and Gibbs reaction energy, in order to thoroughly interpret the thermodynamic predictions were determined. Finally, thirty seven eutectic points for binary systems calculated in the “Phase Diagram” module of the FactSage package were presented. For the purposes of interpreting the results, the melting point ranking for pure substances and binary systems were created.

Suggested Citation

  • Jerzak, Wojciech & Kuźnia, Monika, 2021. "Examination of inorganic gaseous species and condensed phases during coconut husk combustion based on thermodynamic equilibrium predictions," Renewable Energy, Elsevier, vol. 167(C), pages 497-507.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:497-507
    DOI: 10.1016/j.renene.2020.11.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhen & Liu, Jing & Shen, Fenghua & Wang, Zhen, 2020. "Temporal release behavior of potassium during pyrolysis and gasification of sawdust particles," Renewable Energy, Elsevier, vol. 156(C), pages 98-106.
    2. Cao, Wenhan & Martí-Rosselló, Teresa & Li, Jun & Lue, Leo, 2019. "Prediction of potassium compounds released from biomass during combustion," Applied Energy, Elsevier, vol. 250(C), pages 1696-1705.
    3. Wan, Wei & Engvall, Klas & Yang, Weihong & Möller, Björn Fredriksson, 2018. "Experimental and modelling studies on condensation of inorganic species during cooling of product gas from pressurized biomass fluidized bed gasification," Energy, Elsevier, vol. 153(C), pages 35-44.
    4. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Azapagic, Adisa, 2019. "Environmental sustainability of small-scale biomass power technologies for agricultural communities in developing countries," Renewable Energy, Elsevier, vol. 141(C), pages 493-506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elem Patricia Rocha Alves & Orlando Salcedo-Puerto & Jesús Nuncira & Samuel Emebu & Clara Mendoza-Martinez, 2023. "Renewable Energy Potential and CO 2 Performance of Main Biomasses Used in Brazil," Energies, MDPI, vol. 16(9), pages 1-59, May.
    2. Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badshah, Noor & Al-attab, K.A. & Zainal, Z.A., 2020. "Design optimization and experimental analysis of externally fired gas turbine system fuelled by biomass," Energy, Elsevier, vol. 198(C).
    2. Zahida Aslam & Hu Li & James Hammerton & Gordon Andrews & Andrew Ross & Jon C. Lovett, 2021. "Increasing Access to Electricity: An Assessment of the Energy and Power Generation Potential from Biomass Waste Residues in Tanzania," Energies, MDPI, vol. 14(6), pages 1-22, March.
    3. Chen, Tao & Sjöblom, Jonas & Ström, Henrik, 2022. "Numerical investigations of soot generation during wood-log combustion," Applied Energy, Elsevier, vol. 325(C).
    4. Chen, Wen-Lih & Sirisha, Vadlakonda & Yu, Chi-Yuan & Wang, Yan-Ru & Dai, Ming-Wei & Lasek, Janusz & Li, Yueh-Heng, 2024. "Design and optimization of a combined heat and power system with a fluidized-bed combustor and stirling engine," Energy, Elsevier, vol. 293(C).
    5. Minas, Angela Mae & García-Freites, Samira & Walsh, Christopher & Mukoro, Velma & Aberilla, Jhud Mikhail & April, Amanda & Kuriakose, Jaise & Gaete-Morales, Carlos & Gallego-Schmid, Alejandro & Mander, 2024. "Advancing Sustainable Development Goals through energy access: Lessons from the Global South," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Ghazidin, Hafizh & Suyatno, Suyatno & Prismantoko, Adi & Karuana, Feri & Sarjono, & Prabowo, & Setiyawan, Atok & Darmawan, Arif & Aziz, Muhammad & Vuthaluru, Hari & Hariana, Hariana, 2024. "Impact of additives in mitigating ash-related problems during co-combustion of solid recovered fuel and high-sulfur coal," Energy, Elsevier, vol. 292(C).
    7. Jana Růžičková & Marek Kucbel & Helena Raclavská & Barbora Švédová & Konstantin Raclavský & Michal Šafář & Pavel Kantor, 2019. "Chemical and Mineralogical Composition of Soot and Ash from the Combustion of Peat Briquettes in Household Boilers," Energies, MDPI, vol. 12(19), pages 1-21, October.
    8. Laurene Desclaux & Amaro Olimpio Pereira, 2024. "Residual Biomass Gasification for Small-Scale Decentralized Electricity Production: Business Models for Lower Societal Costs," Energies, MDPI, vol. 17(8), pages 1-26, April.
    9. Lovrak, Ana & Pukšec, Tomislav & Duić, Neven, 2020. "A Geographical Information System (GIS) based approach for assessing the spatial distribution and seasonal variation of biogas production potential from agricultural residues and municipal biowaste," Applied Energy, Elsevier, vol. 267(C).
    10. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    11. Juan Camilo Solarte-Toro & Carlos Ariel Cardona Alzate, 2023. "Sustainability of Biorefineries: Challenges and Perspectives," Energies, MDPI, vol. 16(9), pages 1-24, April.
    12. Andante Hadi Pandyaswargo & Mengyi Ruan & Eiei Htwe & Motoshi Hiratsuka & Alan Dwi Wibowo & Yuji Nagai & Hiroshi Onoda, 2020. "Estimating the Energy Demand and Growth in Off-Grid Villages: Case Studies from Myanmar, Indonesia, and Laos," Energies, MDPI, vol. 13(20), pages 1-22, October.
    13. Zhang, Zhen & Liu, Jing & Shen, Fenghua & Wang, Zhen, 2020. "Temporal release behavior of potassium during pyrolysis and gasification of sawdust particles," Renewable Energy, Elsevier, vol. 156(C), pages 98-106.
    14. Wang, Kun & An, Zewen & Wang, Fengyin & Liang, Wenzheng & Wang, Cuiping & Guo, Qingjie & Liu, Yongzhuo & Yue, Guangxi, 2021. "Effect of ash on the performance of iron-based oxygen carrier in the chemical looping gasification of municipal sludge," Energy, Elsevier, vol. 231(C).
    15. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).
    16. Zhou, Haodong & Xu, Kaili & Yao, Xiwen & Li, Jishuo, 2023. "Mineral transformations and molten mechanism during combustion of biomass ash," Renewable Energy, Elsevier, vol. 216(C).
    17. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Tovazhnyanskyy, Leonid & Klochok, Eugeny & Kapustenko, Petro, 2023. "Estimating parameters of plate heat exchanger for condensation of steam from mixture with air as a component of heat exchanger network," Energy, Elsevier, vol. 283(C).
    18. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    19. Arsenyeva, Olga & Klemeš, Jiří Jaromír & Klochock, Eugeny & Kapustenko, Petro, 2023. "The effect of plate size and corrugation pattern on plate heat exchanger performance in specific conditions of steam-air mixture condensation," Energy, Elsevier, vol. 263(PC).
    20. Yuttana Homket & Pongthep Sutheravut & Sawpheeyah Nima, 2021. "Community Capacity-Building Mobilization towards Energy Transitions in the Era of Thailand 4.0: A Case Study on Biomass Power Plants," Energies, MDPI, vol. 14(17), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:497-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.