IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v207y2025ics1364032124006336.html
   My bibliography  Save this article

Advancing waste valorization and end-of-life strategies in the bioeconomy through multi-criteria approaches and the safe and sustainable by design framework

Author

Listed:
  • Arias, Ana
  • Feijoo, Gumersindo
  • Moreira, Maria Teresa
  • Tukker, Arnold
  • Cucurachi, Stefano

Abstract

Proper waste management is a key element in the transition to a sustainable bioeconomy. Population growth and the demand for food and services have led to an ever-increasing production of biotic waste whose disposal in landfills is no longer considered a sustainable option. For this reason, efforts are being made to find an appropriate management strategy for biotic waste, whose organic content allows it to be considered as a resource for the development of biotechnological and/or biorefinery processes. Assessing the sustainability of alternative options is of paramount importance. To this end, this systematic review researches trends in waste management in terms of technology and sustainability profile according to the life-cycle approach and multi-criteria analysis. The aim is to provide insights into potential resource recovery and waste valorization schemes towards high-value-added products in the marketplace, beyond their direct energy recovery. Our results show that future studies should focus on the development of multi-criteria analysis from an SSbD perspective, so that all pillars of sustainability and risk assessment are properly assessed from an early design stage.

Suggested Citation

  • Arias, Ana & Feijoo, Gumersindo & Moreira, Maria Teresa & Tukker, Arnold & Cucurachi, Stefano, 2025. "Advancing waste valorization and end-of-life strategies in the bioeconomy through multi-criteria approaches and the safe and sustainable by design framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124006336
    DOI: 10.1016/j.rser.2024.114907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124006336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Yude & Wang, Sha & Chen, Na, 2024. "Mineral rents, natural resources depletion, and ecological footprint nexus in high emitting countries: Panel GLM analysis," Resources Policy, Elsevier, vol. 89(C).
    2. Acheampong, Alex O. & Opoku, Eric Evans Osei, 2023. "Environmental degradation and economic growth: Investigating linkages and potential pathways," Energy Economics, Elsevier, vol. 123(C).
    3. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Electricity Generation from Municipal Solid Waste in Nigeria: A Prospective LCA Study," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    4. Ascher, Simon & Watson, Ian & Wang, Xiaonan & You, Siming, 2019. "Township-based bioenergy systems for distributed energy supply and efficient household waste re-utilisation: Techno-economic and environmental feasibility," Energy, Elsevier, vol. 181(C), pages 455-467.
    5. Xia Yang & Qiong Zhang & Sarina J. Ergas, 2023. "Enhancement of System and Environmental Performance of High Solids Anaerobic Digestion of Lignocellulosic Banana Waste by Biochar Addition," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
    6. Giovanni Mondello & Roberta Salomone & Giuseppe Ioppolo & Giuseppe Saija & Sergio Sparacia & Maria Claudia Lucchetti, 2017. "Comparative LCA of Alternative Scenarios for Waste Treatment: The Case of Food Waste Production by the Mass-Retail Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    7. Delzeit, Ruth & Heimann, Tobias & Schünemann, Franziska & Söder, Mareike, 2021. "Scenarios for an impact assessment of global bioeconomy strategies: Results from a co-design process," Kiel Working Papers 2188, Kiel Institute for the World Economy (IfW Kiel).
    8. Suraj Adebayo Opatokun & Ana Lopez-Sabiron & German Ferreira & Vladimir Strezov, 2017. "Life Cycle Analysis of Energy Production from Food Waste through Anaerobic Digestion, Pyrolysis and Integrated Energy System," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    9. Jeltsje de Kraker & Katarzyna Kujawa-Roeleveld & Marcelo J. Villena & Claudia Pabón-Pereira, 2019. "Decentralized Valorization of Residual Flows as an Alternative to the Traditional Urban Waste Management System: The Case of Peñalolén in Santiago de Chile," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    10. Luz Marina Ruiz & María Fernández & Ana Genaro & Jaime Martín-Pascual & Montserrat Zamorano, 2023. "Multi-Parametric Analysis Based on Physico-Chemical Characterization and Biochemical Methane Potential Estimation for the Selection of Industrial Wastes as Co-Substrates in Anaerobic Digestion," Energies, MDPI, vol. 16(14), pages 1-19, July.
    11. Vandermeersch, T. & Alvarenga, R.A.F. & Ragaert, P. & Dewulf, J., 2014. "Environmental sustainability assessment of food waste valorization options," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 57-64.
    12. Venkata Ravi Sankar Cheela & Michele John & Wahidul K. Biswas & Brajesh Dubey, 2021. "Environmental Impact Evaluation of Current Municipal Solid Waste Treatments in India Using Life Cycle Assessment," Energies, MDPI, vol. 14(11), pages 1-23, May.
    13. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    14. Cristina Calvo-Porral & Jean-Pierre Lévy-Mangin, 2020. "The Circular Economy Business Model: Examining Consumers’ Acceptance of Recycled Goods," Administrative Sciences, MDPI, vol. 10(2), pages 1-13, May.
    15. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    16. Fabíola Pereira & Carlos Silva, 2023. "Energetic Valorization of Bio-Waste from Municipal Solid Waste in Porto Santo Island," Clean Technol., MDPI, vol. 5(1), pages 1-26, February.
    17. Amit Kumar Jaglan & Venkata Ravi Sankar Cheela & Mansi Vinaik & Brajesh Dubey, 2022. "Environmental Impact Evaluation of University Integrated Waste Management System in India Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    18. Meng, Fanran & Dornau, Aritha & Mcqueen Mason, Simon J. & Thomas, Gavin H. & Conradie, Alex & McKechnie, Jon, 2021. "Bioethanol from autoclaved municipal solid waste: Assessment of environmental and financial viability under policy contexts," Applied Energy, Elsevier, vol. 298(C).
    19. Aschemann-Witzel, Jessica & Stangherlin, Isadora Do Carmo, 2021. "Upcycled by-product use in agri-food systems from a consumer perspective: A review of what we know, and what is missing," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    20. Abdulrahman Abdeljaber & Rawan Zannerni & Wedad Masoud & Mohamed Abdallah & Lisandra Rocha-Meneses, 2022. "Eco-Efficiency Analysis of Integrated Waste Management Strategies Based on Gasification and Mechanical Biological Treatment," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    21. Khan, Feroz & Ali, Yousaf, 2022. "Moving towards a sustainable circular bio-economy in the agriculture sector of a developing country," Ecological Economics, Elsevier, vol. 196(C).
    22. Cremiato, Raffaele & Mastellone, Maria Laura & Tagliaferri, Carla & Zaccariello, Lucio & Lettieri, Paola, 2018. "Environmental impact of municipal solid waste management using Life Cycle Assessment: The effect of anaerobic digestion, materials recovery and secondary fuels production," Renewable Energy, Elsevier, vol. 124(C), pages 180-188.
    23. Xia, Longlong & Chen, Wenhao & Lu, Bufan & Wang, Shanshan & Xiao, Lishan & Liu, Beibei & Yang, Hongqiang & Huang, Chu-Long & Wang, Hongtao & Yang, Yang & Lin, Litao & Zhu, Xiangdong & Chen, Wei-Qiang , 2023. "Climate mitigation potential of sustainable biochar production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    24. Daniel Hoehn & María Margallo & Jara Laso & Israel Ruiz-Salmón & Ana Fernández-Ríos & Cristina Campos & Ian Vázquez-Rowe & Rubén Aldaco & Paula Quinteiro, 2021. "Water Footprint Assessment of Food Loss and Waste Management Strategies in Spanish Regions," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    25. Sahoo, Kamalakanta & Mani, Sudhagar, 2019. "Economic and environmental impacts of an integrated-state anaerobic digestion system to produce compressed natural gas from organic wastes and energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    26. Antonopoulou, G. & Ntaikou, I. & Pastore, C. & di Bitonto, L. & Bebelis, S. & Lyberatos, G., 2019. "An overall perspective for the energetic valorization of household food waste using microbial fuel cell technology of its extract, coupled with anaerobic digestion of the solid residue," Applied Energy, Elsevier, vol. 242(C), pages 1064-1073.
    27. Zygmunt Kowalski & Joanna Kulczycka & Agnieszka Makara & Roland Verhé & Guy De Clercq, 2022. "Assessment of Energy Recovery from Municipal Waste Management Systems Using Circular Economy Quality Indicators," Energies, MDPI, vol. 15(22), pages 1-22, November.
    28. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    29. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Azapagic, Adisa, 2019. "Environmental sustainability of small-scale biomass power technologies for agricultural communities in developing countries," Renewable Energy, Elsevier, vol. 141(C), pages 493-506.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones, R.E. & Speight, R.E. & Blinco, J.L. & O'Hara, I.M., 2022. "Biorefining within food loss and waste frameworks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Cho, Hannah Hyunah & Strezov, Vladimir & Evans, Tim J., 2024. "Life cycle assessment of power-to-methane and renewable methane production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    3. Spyridoula Gerassimidou & Manoj Dora & Eleni Iacovidou, 2022. "A Tool for the Selection of Food Waste Management Approaches for the Hospitality and Food Service Sector in the UK," Resources, MDPI, vol. 11(10), pages 1-27, September.
    4. Maneechotiros Rotthong & Masaki Takaoka & Kazuyuki Oshita & Pichaya Rachdawong & Shabbir H. Gheewala & Trakarn Prapaspongsa, 2022. "Life Cycle Assessment of Integrated Municipal Organic Waste Management Systems in Thailand," Sustainability, MDPI, vol. 15(1), pages 1-31, December.
    5. Piotr Sulewski & Karolina Kais & Marlena Gołaś & Grzegorz Rawa & Klaudia Urbańska & Adam Wąs, 2021. "Home Bio-Waste Composting for the Circular Economy," Energies, MDPI, vol. 14(19), pages 1-25, September.
    6. Zhang, Qifan & Wang, Shiya & Sun, Hangyu & Arhin, Samuel Gyebi & Yang, Ziyi & Liu, Guangqing & Tong, Yen Wah & Tian, Hailin & Wang, Wen, 2024. "Anaerobic digestion + pyrolysis integrated system for food waste treatment achieving both environmental and economic benefits," Energy, Elsevier, vol. 288(C).
    7. David Fernández-Gutiérrez & Alejandra Argüelles & Gemma Castejón Martínez & José M. Soriano Disla & Andrés J. Lara-Guillén, 2022. "Unlocking New Value from Urban Biowaste: LCA of the VALUEWASTE Biobased Products," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    8. Yu Wang & Roaa H. Latief & Hasan Al-Mosawe & Hussein K. Mohammad & Amjad Albayati & Jonathan Haynes, 2021. "Influence of Iron Filing Waste on the Performance of Warm Mix Asphalt," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    9. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    10. Nketiah, Emmanuel & Song, Huaming & Cai, Xiang & Adjei, Mavis & Adu-Gyamfi, Gibbson & Obuobi, Bright, 2022. "Citizens’ intention to invest in municipal solid waste to energy projects in Ghana: The impact of direct and indirect effects," Energy, Elsevier, vol. 254(PC).
    11. Felician A. Kitole & Jennifer K. Sesabo & Olufunmilola F. Adesiyan & A. O. Ige & Temitope O. Ojo & Chijioke U. Emenike & Nolwazi Z. Khumalo & Hazem S. Kassem & Khalid M. Elhindi, 2024. "Greening the Growth: A Comprehensive Analysis of Globalization, Economic Performance, and Environmental Degradation in Tanzania," Sustainability, MDPI, vol. 16(24), pages 1-19, December.
    12. Rose Daphnee Tchonkouang & Helen Onyeaka & Taghi Miri, 2023. "From Waste to Plate: Exploring the Impact of Food Waste Valorisation on Achieving Zero Hunger," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    13. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Wasi Ul Hassan Shah & Rizwana Yasmeen & Muddassar Sarfraz & Larisa Ivascu, 2023. "The Repercussions of Economic Growth, Industrialization, Foreign Direct Investment, and Technology on Municipal Solid Waste: Evidence from OECD Economies," Sustainability, MDPI, vol. 15(1), pages 1-14, January.
    15. Kola Benson Ajeigbe & Fortune Ganda, 2024. "Leveraging Food Security and Environmental Sustainability in Achieving Sustainable Development Goals: Evidence from a Global Perspective," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
    16. Ilias Apostolopoulos & Georgios Bampos & Amaia Soto Beobide & Stefanos Dailianis & George Voyiatzis & Symeon Bebelis & Gerasimos Lyberatos & Georgia Antonopoulou, 2021. "The Effect of Anode Material on the Performance of a Hydrogen Producing Microbial Electrolysis Cell, Operating with Synthetic and Real Wastewaters," Energies, MDPI, vol. 14(24), pages 1-20, December.
    17. Álvaro J. Arnal & Patricia Royo & Gianpiero Pataro & Giovanna Ferrari & Víctor J. Ferreira & Ana M. López-Sabirón & Germán A. Ferreira, 2018. "Implementation of PEF Treatment at Real-Scale Tomatoes Processing Considering LCA Methodology as an Innovation Strategy in the Agri-Food Sector," Sustainability, MDPI, vol. 10(4), pages 1-16, March.
    18. Morero, Betzabet & Montagna, Agustín F. & Campanella, Enrique A. & Cafaro, Diego C., 2020. "Optimal process design for integrated municipal waste management with energy recovery in Argentina," Renewable Energy, Elsevier, vol. 146(C), pages 2626-2636.
    19. Amit Kumar Jaglan & Venkata Ravi Sankar Cheela & Mansi Vinaik & Brajesh Dubey, 2022. "Environmental Impact Evaluation of University Integrated Waste Management System in India Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    20. Mona Yaghoubi & Reza Yaghoubi, 2024. "The Ups and Downs of Oil Prices: Asymmetric Impacts of Oil Price Volatility on Corporate Environmental Responsibility," Working Papers in Economics 24/11, University of Canterbury, Department of Economics and Finance.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124006336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.