IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp217-235.html
   My bibliography  Save this article

A mathematical model to assess the influence of transients on a refractory-lined solar receiver

Author

Listed:
  • Rafique, Muhammad M.
  • Nathan, Graham
  • Saw, Woei

Abstract

An approach to analyze and optimize the thermal performance of a refractory-lined particle receiver in response to solar resource variability has been demonstrated. A transient mathematical model has been developed, incorporating variable direct normal irradiance (DNI) and heat losses associated with a directly irradiated particle receiver. The model is employed to assess the time-dependent temperature fields of the receiver cavity walls, the particles and gas from the initial state to another equilibrium. The influence of the receiver’s geometric parameters on the transient thermal response of the receiver has been assessed using real-time solar irradiance data based on the temperature changes for each phase. This can be used to support optimization of the refractory lining and insulation, to trade-off between the solar DNI input, thermal losses from the receiver, and allowable temperatures and heating rates of refractory and outer steel shell, via an energy balance. New insight is provided on the role of the material and thickness of the refractory lining on the system output when accounting for the allowable heating rate of refractory material to avoid failure due to thermal shock.

Suggested Citation

  • Rafique, Muhammad M. & Nathan, Graham & Saw, Woei, 2021. "A mathematical model to assess the influence of transients on a refractory-lined solar receiver," Renewable Energy, Elsevier, vol. 167(C), pages 217-235.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:217-235
    DOI: 10.1016/j.renene.2020.11.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Chongzhe & Zhang, Yanping & Falcoz, Quentin & Neveu, Pierre & Zhang, Cheng & Shu, Weicheng & Huang, Shuhong, 2017. "Design and optimization of a high-temperature cavity receiver for a solar energy cascade utilization system," Renewable Energy, Elsevier, vol. 103(C), pages 478-489.
    2. Jin, Yabin & Fang, Jiabin & Wei, Jinjia & Qaisrani, Mumtaz A. & Wang, Xinhe, 2019. "Thermal performance evaluation of a cavity receiver based on particle's radiation properties during the day time," Renewable Energy, Elsevier, vol. 143(C), pages 622-636.
    3. Tan, Taide & Chen, Yitung, 2010. "Review of study on solid particle solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 265-276, January.
    4. Zhang, Huili & Benoit, Hadrien & Perez-Lopèz, Inmaculada & Flamant, Gilles & Tan, Tianwei & Baeyens, Jan, 2017. "High-efficiency solar power towers using particle suspensions as heat carrier in the receiver and in the thermal energy storage," Renewable Energy, Elsevier, vol. 111(C), pages 438-446.
    5. Neber, Matthew & Lee, Hohyun, 2012. "Design of a high temperature cavity receiver for residential scale concentrated solar power," Energy, Elsevier, vol. 47(1), pages 481-487.
    6. Liao, Zhirong & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng, 2014. "Allowable flux density on a solar central receiver," Renewable Energy, Elsevier, vol. 62(C), pages 747-753.
    7. Xu, Li & Stein, Wesley & Kim, Jin-Soo & Wang, Zhifeng, 2018. "Three-dimensional transient numerical model for the thermal performance of the solar receiver," Renewable Energy, Elsevier, vol. 120(C), pages 550-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ingenhoven, Philip & Lee, Leok & Saw, Woei & Rafique, Muhammad Mujahid & Potter, Daniel & Nathan, Graham J., 2023. "Techno-economic assessment from a transient simulation of a concentrated solar thermal plant to deliver high-temperature industrial process heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Rafique, Muhammad M. & Nathan, Graham & Saw, Woei, 2022. "Modelled annual thermal performance of a 50MWth refractory-lined particle-laden solar receiver operating above 1000°C," Renewable Energy, Elsevier, vol. 197(C), pages 1081-1093.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gimeno-Furio, A. & Hernandez, L. & Martinez-Cuenca, R. & Mondragón, R. & Vela, A. & Cabedo, L. & Barreneche, C. & Iacob, M., 2020. "New coloured coatings to enhance silica sand absorbance for direct particle solar receiver applications," Renewable Energy, Elsevier, vol. 152(C), pages 1-8.
    2. Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Chen, Jinli & Xiao, Gang & Xu, Haoran & Zhou, Xin & Yang, Jiamin & Ni, Mingjiang & Cen, Kefa, 2022. "Experiment and dynamic simulation of a solar tower collector system for power generation," Renewable Energy, Elsevier, vol. 196(C), pages 946-958.
    4. Rafique, Muhammad M. & Nathan, Graham & Saw, Woei, 2022. "Modelled annual thermal performance of a 50MWth refractory-lined particle-laden solar receiver operating above 1000°C," Renewable Energy, Elsevier, vol. 197(C), pages 1081-1093.
    5. Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B. & Gorjian, Sh, 2018. "Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil," Energy, Elsevier, vol. 154(C), pages 168-181.
    6. Zhang, Huili & Kong, Weibin & Tan, Tianwei & Baeyens, Jan, 2017. "High-efficiency concentrated solar power plants need appropriate materials for high-temperature heat capture, conveying and storage," Energy, Elsevier, vol. 139(C), pages 52-64.
    7. Zhang, Qiang & Cao, Donghong & Ge, Zhihua & Du, Xiaoze, 2020. "Response characteristics of external receiver for concentrated solar power to disturbance during operation," Applied Energy, Elsevier, vol. 278(C).
    8. Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
    9. Chu, Shunzhou & Bai, Fengwu & Zhang, Xiliang & Yang, Bei & Cui, Zhiying & Nie, Fuliang, 2018. "Experimental study and thermal analysis of a tubular pressurized air receiver," Renewable Energy, Elsevier, vol. 125(C), pages 413-424.
    10. Ni, Song & Pan, Chin & Hibiki, Takashi & Zhao, Jiyun, 2024. "Applications of nucleate boiling in renewable energy and thermal management and recent advances in modeling——a review," Energy, Elsevier, vol. 289(C).
    11. Roldán, M.I. & Fernández-Reche, J. & Ballestrín, J., 2016. "Computational fluid dynamics evaluation of the operating conditions for a volumetric receiver installed in a solar tower," Energy, Elsevier, vol. 94(C), pages 844-856.
    12. Zuo, Yuhang & Li, Yawei & Zhou, Hao, 2022. "Numerical study on preheating process of molten salt tower receiver in windy conditions," Energy, Elsevier, vol. 251(C).
    13. Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B., 2016. "Optimizing the efficiency of a solar receiver with tubular cylindrical cavity for a solar-powered organic Rankine cycle," Energy, Elsevier, vol. 112(C), pages 1259-1272.
    14. Fernández-Torrijos, M. & González-Gómez, P.A. & Sobrino, C. & Santana, D., 2021. "Economic and thermo-mechanical design of tubular sCO2 central-receivers," Renewable Energy, Elsevier, vol. 177(C), pages 1087-1101.
    15. Zhang, Qiangqiang & Chang, Zheshao & Fu, Mingkai & Nie, Fuliang & Ren, Ting & Li, Xin, 2023. "Performance analysis of a light uniform device for the solar receiver or reactor," Energy, Elsevier, vol. 270(C).
    16. Manzolini, Giampaolo & Lucca, Gaia & Binotti, Marco & Lozza, Giovanni, 2021. "A two-step procedure for the selection of innovative high temperature heat transfer fluids in solar tower power plants," Renewable Energy, Elsevier, vol. 177(C), pages 807-822.
    17. Jiang, Zhu & Palacios, Anabel & Lei, Xianzhang & Navarro, M.E. & Qiao, Geng & Mura, Ernesto & Xu, Guizhi & Ding, Yulong, 2019. "Novel key parameter for eutectic nitrates based nanofluids selection for concentrating solar power (CSP) systems," Applied Energy, Elsevier, vol. 235(C), pages 529-542.
    18. Saranprabhu, M.K. & Rajan, K.S., 2019. "Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 141(C), pages 451-459.
    19. Chen, Jinli & Xiao, Gang & Ferrari, Mario Luigi & Yang, Tianfeng & Ni, Mingjiang & Cen, Kefa, 2020. "Dynamic simulation of a solar-hybrid microturbine system with experimental validation of main parts," Renewable Energy, Elsevier, vol. 154(C), pages 187-200.
    20. Huang, Weidong & Yu, Liang & Hu, Peng, 2019. "An analytical solution for the solar flux density produced by a round focusing heliostat," Renewable Energy, Elsevier, vol. 134(C), pages 306-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:217-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.