IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp807-822.html
   My bibliography  Save this article

A two-step procedure for the selection of innovative high temperature heat transfer fluids in solar tower power plants

Author

Listed:
  • Manzolini, Giampaolo
  • Lucca, Gaia
  • Binotti, Marco
  • Lozza, Giovanni

Abstract

This work compares with a two-step procedure the performance of different Heat Transfer Fluids (HTF) for high temperature receiver applications (up to 715 °C) in advanced Solar Tower (ST) plants. The most promising molten salts and liquid metals are initially selected and ranked according to their performance, estimated with different Figures of Merit (FoM) available in literature or newly defined. For the best performing fluids, different hydraulic configurations and tube diameters at fixed receiver size are tested. The optimized external tubular receiver configuration for each HTF is then implemented in a ST plant and its performance is assessed through a detailed techno-economic analysis, considering the use of a direct thermal energy storage system and of a sCO2 based power cycle. As a second step, the yearly electricity yield and the LCOE are evaluated for two different sites. Results show NaCl–MgCl2 as the best option for the considered type of plant with a LCOE of 151 $/MWh, which is anyhow 10% higher than the reference Solar Salts case.

Suggested Citation

  • Manzolini, Giampaolo & Lucca, Gaia & Binotti, Marco & Lozza, Giovanni, 2021. "A two-step procedure for the selection of innovative high temperature heat transfer fluids in solar tower power plants," Renewable Energy, Elsevier, vol. 177(C), pages 807-822.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:807-822
    DOI: 10.1016/j.renene.2021.05.153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121008429
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Binotti, Marco & Astolfi, Marco & Campanari, Stefano & Manzolini, Giampaolo & Silva, Paolo, 2017. "Preliminary assessment of sCO2 cycles for power generation in CSP solar tower plants," Applied Energy, Elsevier, vol. 204(C), pages 1007-1017.
    2. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2014. "Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?," Energy, Elsevier, vol. 78(C), pages 587-603.
    3. Benoit, H. & Spreafico, L. & Gauthier, D. & Flamant, G., 2016. "Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 298-315.
    4. Wei, Xiaolan & Song, Ming & Wang, Weilong & Ding, Jing & Yang, Jianping, 2015. "Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage," Applied Energy, Elsevier, vol. 156(C), pages 306-310.
    5. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2013. "Allocating electricity production from a hybrid fossil-renewable power plant among its multi primary resources," Energy, Elsevier, vol. 60(C), pages 344-360.
    6. Zhang, Zhaoli & Yuan, Yanping & Zhang, Nan & Sun, Qinrong & Cao, Xiaoling & Sun, Liangliang, 2017. "Thermal properties enforcement of carbonate ternary via lithium fluoride: A heat transfer fluid for concentrating solar power systems," Renewable Energy, Elsevier, vol. 111(C), pages 523-531.
    7. Walczak, Magdalena & Pineda, Fabiola & Fernández, Ángel G. & Mata-Torres, Carlos & Escobar, Rodrigo A., 2018. "Materials corrosion for thermal energy storage systems in concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 22-44.
    8. Liao, Zhirong & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng, 2014. "Allowable flux density on a solar central receiver," Renewable Energy, Elsevier, vol. 62(C), pages 747-753.
    9. Tian, Heqing & Wang, Weilong & Ding, Jing & Wei, Xiaolan & Song, Ming & Yang, Jianping, 2015. "Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites," Applied Energy, Elsevier, vol. 148(C), pages 87-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodríguez-Sánchez, M.R. & Laporte-Azcué, M. & Montoya, A. & Hernández-Jiménez, F., 2022. "Non-conventional tube shapes for lifetime extend of solar external receivers," Renewable Energy, Elsevier, vol. 186(C), pages 535-546.
    2. Doninelli, M. & Morosini, E. & Di Marcoberardino, G. & Invernizzi, C.M. & Iora, P. & Riva, M. & Stringari, P. & Manzolini, G., 2024. "Experimental investigation of the CO2+SiCl4 mixture as innovative working fluid for power cycles: Bubble points and liquid density measurements," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Hongjuan & Xu, Zhang & Yang, Yongping, 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis," Applied Energy, Elsevier, vol. 182(C), pages 1-8.
    2. Gunasekara, Saman Nimali & Martin, Viktoria & Chiu, Justin Ningwei, 2017. "Phase equilibrium in the design of phase change materials for thermal energy storage: State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 558-581.
    3. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    4. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Marta Muñoz & Antonio Rovira & María José Montes, 2022. "Thermodynamic cycles for solar thermal power plants: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(2), March.
    6. Bijarniya, Jay Prakash & Sudhakar, K. & Baredar, Prashant, 2016. "Concentrated solar power technology in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 593-603.
    7. Linares, José I. & Montes, María J. & Cantizano, Alexis & Sánchez, Consuelo, 2020. "A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants," Applied Energy, Elsevier, vol. 263(C).
    8. Xu, Li & Stein, Wesley & Kim, Jin-Soo & Wang, Zhifeng, 2018. "Three-dimensional transient numerical model for the thermal performance of the solar receiver," Renewable Energy, Elsevier, vol. 120(C), pages 550-566.
    9. Iora, Paolo & Beretta, Gian Paolo & Ghoniem, Ahmed F., 2019. "Exergy loss based allocation method for hybrid renewable-fossil power plants applied to an integrated solar combined cycle," Energy, Elsevier, vol. 173(C), pages 893-901.
    10. Liu, Yun & Dong, Yue & Li, Tao & Zhang, Chuan-Zhi, 2022. "Performance analysis and comparison of different corrugated structures and a novel alternative elliptical twisted tube in supercritical CO2 tower solar receivers," Renewable Energy, Elsevier, vol. 199(C), pages 1523-1533.
    11. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    12. Chu, Shunzhou & Bai, Fengwu & Zhang, Xiliang & Yang, Bei & Cui, Zhiying & Nie, Fuliang, 2018. "Experimental study and thermal analysis of a tubular pressurized air receiver," Renewable Energy, Elsevier, vol. 125(C), pages 413-424.
    13. Rovense, Francesco & Reyes-Belmonte, Miguel Ángel & Romero, Manuel & González-Aguilar, José, 2022. "Thermo-economic analysis of a particle-based multi-tower solar power plant using unfired combined cycle for evening peak power generation," Energy, Elsevier, vol. 240(C).
    14. Kondaiah, P. & Pitchumani, R., 2024. "Electrodeposited nickel coatings for exceptional corrosion mitigation in industrial grade molten chloride salts for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2014. "Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?," Energy, Elsevier, vol. 78(C), pages 587-603.
    16. Bell, S. & Steinberg, T. & Will, G., 2019. "Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials," Applied Energy, Elsevier, vol. 163(C), pages 1-8.
    18. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    19. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    20. Muhammad Suleman Malik & Naveed Iftikhar & Abdul Wadood & Muhammad Omer Khan & Muhammad Usman Asghar & Shahbaz Khan & Tahir Khurshaid & Ki-Chai Kim & Zabdur Rehman & S. Tauqeer ul Islam Rizvi, 2020. "Design and Fabrication of Solar Thermal Energy Storage System Using Potash Alum as a PCM," Energies, MDPI, vol. 13(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:807-822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.