IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7089-d926409.html
   My bibliography  Save this article

A 1D-3D Coupling Model to Evaluate Hydropower Generation System Stability

Author

Listed:
  • Meng Zhang

    (State Grid Gansu Liujiaxia Hydropower Plant, Yongjing 731600, China
    Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
    Institute of Water Resources and Hydropower Research, Northwest A&F University, Xianyang 712100, China
    These authors contribute equally to this paper.)

  • Jinhai Feng

    (Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
    Institute of Water Resources and Hydropower Research, Northwest A&F University, Xianyang 712100, China
    These authors contribute equally to this paper.)

  • Ziwen Zhao

    (Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
    Institute of Water Resources and Hydropower Research, Northwest A&F University, Xianyang 712100, China)

  • Wei Zhang

    (State Grid Gansu Liujiaxia Hydropower Plant, Yongjing 731600, China)

  • Junzhi Zhang

    (Northwest Engineering Corporation Limited, Xi’an 710000, China)

  • Beibei Xu

    (Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
    Northwest Engineering Corporation Limited, Xi’an 710000, China)

Abstract

This paper proposes a novel 1D-3D approach for the stability characteristics of the hydropower generation system (HGS) in transition processes. First, a 1D-3D coupling model was established for the HGS in the load-reduction process. Second, a sensitivity analysis of the HGS’s parameters to the rotation speed and discharge was conducted. Third, the pressure pulsation characteristics of the HGS with three typical guide vane openings were analyzed during the load-reduction process. The results show that with the closure of the guide vane, the discharge gradually decreases and it is sensitive to the change in hydraulic parameters. The rotation speed fluctuates at the early stage of the transition process and is easily affected by mechanical parameters. In addition, the pressure pulsation inside the Francis turbine is more intense under small openings than large openings, and the primary frequency of pressure pulsation under three opening degrees is the blade frequency. The 1D-3D coupling model successfully integrates the advantages of traditional methods and provides a reference for predicting system stability and exploring the stability mechanism.

Suggested Citation

  • Meng Zhang & Jinhai Feng & Ziwen Zhao & Wei Zhang & Junzhi Zhang & Beibei Xu, 2022. "A 1D-3D Coupling Model to Evaluate Hydropower Generation System Stability," Energies, MDPI, vol. 15(19), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7089-:d:926409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xiaoxi & Cheng, Yongguang & Yang, Zhiyan & Chen, Qiuhua & Liu, Demin, 2021. "Water column separation in pump-turbine after load rejection: 1D-3D coupled simulation of a model pumped-storage system," Renewable Energy, Elsevier, vol. 163(C), pages 685-697.
    2. Şerban, I. & Marinescu, C., 2011. "Aggregate load-frequency control of a wind-hydro autonomous microgrid," Renewable Energy, Elsevier, vol. 36(12), pages 3345-3354.
    3. Liu, Demin & Zhang, Xiaoxi & Yang, Zhiyan & Liu, Ke & Cheng, Yongguang, 2021. "Evaluating the pressure fluctuations during load rejection of two pump-turbines in a prototype pumped-storage system by using 1D-3D coupled simulation," Renewable Energy, Elsevier, vol. 171(C), pages 1276-1289.
    4. Yang, Weijia & Norrlund, Per & Chung, Chi Yung & Yang, Jiandong & Lundin, Urban, 2018. "Eigen-analysis of hydraulic-mechanical-electrical coupling mechanism for small signal stability of hydropower plant," Renewable Energy, Elsevier, vol. 115(C), pages 1014-1025.
    5. Camal, S. & Teng, F. & Michiorri, A. & Kariniotakis, G. & Badesa, L., 2019. "Scenario generation of aggregated Wind, Photovoltaics and small Hydro production for power systems applications," Applied Energy, Elsevier, vol. 242(C), pages 1396-1406.
    6. Guo, Wencheng & Peng, Zhiyuan, 2019. "Hydropower system operation stability considering the coupling effect of water potential energy in surge tank and power grid," Renewable Energy, Elsevier, vol. 134(C), pages 846-861.
    7. Daqing Zhou & Huixiang Chen & Jie Zhang & Shengwen Jiang & Jia Gui & Chunxia Yang & An Yu, 2019. "Numerical Study on Flow Characteristics in a Francis Turbine during Load Rejection," Energies, MDPI, vol. 12(4), pages 1-15, February.
    8. Laouari, Ahmed & Ghenaiet, Adel, 2019. "Predicting unsteady behavior of a small francis turbine at several operating points," Renewable Energy, Elsevier, vol. 133(C), pages 712-724.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Dong & Wang, Xin & Peng, Yunshui & Zhang, Hui & Xiao, Zhihuai & Han, Xiangdong & Malik, O.P., 2020. "Stability analysis of hydropower units under full operating conditions considering turbine nonlinearity," Renewable Energy, Elsevier, vol. 154(C), pages 723-742.
    2. Xu, Beibei & Chen, Diyi & Venkateshkumar, M. & Xiao, Yu & Yue, Yan & Xing, Yanqiu & Li, Peiquan, 2019. "Modeling a pumped storage hydropower integrated to a hybrid power system with solar-wind power and its stability analysis," Applied Energy, Elsevier, vol. 248(C), pages 446-462.
    3. Yu, Xiaodong & Yang, Xiuwei & Yu, Chao & Zhang, Jian & Tian, Yuan, 2021. "Direct approach to optimize PID controller parameters of hydropower plants," Renewable Energy, Elsevier, vol. 173(C), pages 342-350.
    4. Shi, Yousong & Zhou, Jianzhong & Guo, Wencheng & Zheng, Yang & Li, Chaoshun & Zhang, Yongchuan, 2022. "Nonlinear dynamic characteristics analysis and adaptive avoid vortex-coordinated optimal control of hydropower units under grid connection," Renewable Energy, Elsevier, vol. 200(C), pages 911-930.
    5. Dong Liu & Xinxu Wei & Jingjing Zhang & Xiao Hu & Lihong Zhang, 2023. "A Parameter Sensitivity Analysis of Hydropower Units under Full Operating Conditions Considering Turbine Nonlinearity," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    6. Zhao, Zhigao & Yang, Jiandong & Huang, Yifan & Yang, Weijia & Ma, Weichao & Hou, Liangyu & Chen, Man, 2021. "Improvement of regulation quality for hydro-dominated power system: quantifying oscillation characteristic and multi-objective optimization," Renewable Energy, Elsevier, vol. 168(C), pages 606-631.
    7. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    8. Xijun Zhou & Yongjin Ye & Xianyu Zhang & Xiuwei Yang & Haijun Wang, 2022. "Refined 1D–3D Coupling for High-Frequency Forced Vibration Analysis in Hydraulic Systems," Energies, MDPI, vol. 15(16), pages 1-18, August.
    9. Wei Huang & Jiming Ma & Xinlei Guo & Huokun Li & Jiazhen Li & Gang Wang, 2021. "Stability Criterion for Mass Oscillation in the Surge Tank of a Hydropower Station Considering Velocity Head and Throttle Loss," Energies, MDPI, vol. 14(17), pages 1-19, August.
    10. Zhao, Kunjie & Xu, Yanhe & Guo, Pengcheng & Qian, Zhongdong & Zhang, Yongchuan & Liu, Wei, 2022. "Multi-scale oscillation characteristics and stability analysis of pumped-storage unit under primary frequency regulation condition with low water head grid-connected," Renewable Energy, Elsevier, vol. 189(C), pages 1102-1119.
    11. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    12. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    13. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    14. Laouari, Ahmed & Ghenaiet, Adel, 2021. "Investigation of steady and unsteady cavitating flows through a small Francis turbine," Renewable Energy, Elsevier, vol. 172(C), pages 841-861.
    15. Salleh, Mohd Badrul & Kamaruddin, Noorfazreena M. & Mohamed-Kassim, Zulfaa, 2022. "Experimental investigation on the effects of deflector angles on the power performance of a Savonius turbine for hydrokinetic applications in small rivers," Energy, Elsevier, vol. 247(C).
    16. Xu, Beibei & Jun, Hong-Bae & Chen, Diyi & Li, Huanhuan & Zhang, Jingjing & Cavalcante Blanco, Claudio Jose & Shen, Haijun, 2019. "Stability analysis of a hydro-turbine governing system considering inner energy losses," Renewable Energy, Elsevier, vol. 134(C), pages 258-266.
    17. Liu, Yi & Zhang, Jian & Liu, Zhe & Chen, Long & Yu, Xiaodong, 2022. "Surge wave characteristics for hydropower plant with upstream double surge tanks connected in series under small load disturbance," Renewable Energy, Elsevier, vol. 186(C), pages 667-676.
    18. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    19. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Chen, Jinbao & Zheng, Yang & Liu, Dong & Du, Yang & Xiao, Zhihuai, 2023. "Quantitative stability analysis of complex nonlinear hydraulic turbine regulation system based on accurate calculation," Applied Energy, Elsevier, vol. 351(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7089-:d:926409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.