IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp1673-1681.html
   My bibliography  Save this article

Renewable aromatic hydrocarbons production from catalytic pyrolysis of lignin with Al-SBA-15 and HZSM-5: Synergistic effect and coke behaviour

Author

Listed:
  • Wang, Shaoqing
  • Li, Zhihe
  • Yi, Weiming
  • Fu, Peng
  • Zhang, Andong
  • Bai, Xueyuan

Abstract

With a focus on converting waste to energy, this study integrated the macromolecular reaction ability of Al-SBA-15 and the shape selectivity of HZSM-5 for the production of renewable aromatic hydrocarbons. Results demonstrated that the catalytic pyrolysis of lignin with both Al-SBA-15 and HZSM-5 was able to improve the mono-aromatic hydrocarbons (MAHs) production while inhibiting the formation of undesirable poly-aromatic hydrocarbons (PAHs), thus controlling the MAHs and PAHs content in the bio-oil. At optimal operation conditions (pyrolysis temperature: 550 °C, Al-SBA-15/HZSM-5 ratio: 1:3), the MAHs content was 42.57% higher than that catalyzed by HZSM-5 only (28.30%). The PAHs content was only 27.13%. Typical MAHs (benzene, toluene and xylene, denoted as BTX) and PAHs selectivities were determined as 55.91% and 38.92%, respectively. Thermogravimetry-differential thermogravimetric (TG-DTG) analysis indicated that the used HZSM-5 was principally composed of graphite-like coke and a negligible content of fibrous-like coke. The coke content was observed as 5.65% compared to 10.52% in the HZSM-5 only. Furthermore, the efficient synergistic effect of Al-SBA-15 and HZSM-5 resulted in the deep conversion and directional reforming of the lignin pyrolysis vapors. This study can promote the high-grade utilization of lignin through the application of feasible fixed-bed catalytic pyrolysis technology.

Suggested Citation

  • Wang, Shaoqing & Li, Zhihe & Yi, Weiming & Fu, Peng & Zhang, Andong & Bai, Xueyuan, 2021. "Renewable aromatic hydrocarbons production from catalytic pyrolysis of lignin with Al-SBA-15 and HZSM-5: Synergistic effect and coke behaviour," Renewable Energy, Elsevier, vol. 163(C), pages 1673-1681.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1673-1681
    DOI: 10.1016/j.renene.2020.10.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120316748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    2. Chio, Chonlong & Sain, Mohini & Qin, Wensheng, 2019. "Lignin utilization: A review of lignin depolymerization from various aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 232-249.
    3. Wang, Jia & Zhong, Zhaoping & Ding, Kuan & Zhang, Bo & Deng, Aidong & Min, Min & Chen, Paul & Ruan, Roger, 2017. "Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modified HZSM-5," Energy, Elsevier, vol. 133(C), pages 90-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yujian & Wang, Haoyu & Li, Haoyang & Han, Xue & Zhang, Mingyuan & Sun, Yan & Fan, Xudong & Tu, Ren & Zeng, Yimin & Xu, Chunbao Charles & Xu, Xiwei, 2022. "Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review," Renewable Energy, Elsevier, vol. 196(C), pages 462-481.
    2. Fan, Yongsheng & Yang, Jiaheng & Xu, Anjun & Zhu, Jinjiao & Shi, Yunxi, 2024. "Bio-aromatics synthesis via catalytic pyrolysis of cellulose with lithium-ion battery cathodes and modified HZSM-5 coupled in-situ plasma mode," Renewable Energy, Elsevier, vol. 226(C).
    3. Kumar, Avnish & Biswas, Bijoy & Saini, Komal & Kumar, Adarsh & Kumar, Jitendra & Krishna, Bhavya B. & Bhaskar, Thallada, 2021. "Py-GC/MS study of prot lignin with cobalt impregnated titania, ceria and zirconia catalysts," Renewable Energy, Elsevier, vol. 172(C), pages 121-129.
    4. Zhang, Jun & Li, Chengyu & Yuan, Haoran & Chen, Yong, 2022. "Enhancement of aromatics production via cellulose fast pyrolysis over Ru modified hierarchical zeolites," Renewable Energy, Elsevier, vol. 184(C), pages 280-290.
    5. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research," Renewable Energy, Elsevier, vol. 189(C), pages 315-338.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Ryu, Hae Won & Lee, Hyung Won & Jae, Jungho & Park, Young-Kwon, 2019. "Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: Effect of magnesium oxide catalyst," Energy, Elsevier, vol. 179(C), pages 669-675.
    3. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    4. Djukić-Vuković, A. & Mladenović, D. & Ivanović, J. & Pejin, J. & Mojović, L., 2019. "Towards sustainability of lactic acid and poly-lactic acid polymers production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 238-252.
    5. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    6. Jin, Jiafeng & Sun, Jinsheng & Lv, Kaihe & Hou, Qilin & Guo, Xuan & Liu, Kesong & Deng, Yan & Song, Lide, 2023. "Catalytic pyrolysis of oil shale using tailored Cu@zeolite catalyst and molecular dynamic simulation," Energy, Elsevier, vol. 278(PA).
    7. Liu, Tian & Wang, Peipei & Tian, Jing & Guo, Jiaqi & Zhu, Wenyuan & Bushra, Rani & Huang, Caoxing & Jin, Yongcan & Xiao, Huining & Song, Junlong, 2024. "Emerging role of additives in lignocellulose enzymatic saccharification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    8. Yiquan Zhao & Le Xue & Zhiyi Huang & Zixian Lei & Shiyu Xie & Zhenzhen Cai & Xinran Rao & Ze Zheng & Ning Xiao & Xiaoyu Zhang & Fuying Ma & Hongbo Yu & Shangxian Xie, 2024. "Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Zhang, Menghui & Qi, Yongfeng & Zhang, Wan & Wang, Meiting & Li, Jingyi & Lu, Yi & Zhang, Sheng & He, Jiazheng & Cao, Hao & Tao, Xuan & Xu, Hanlu & Zhang, Sheng, 2024. "A review on waste tires pyrolysis for energy and material recovery from the optimization perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Tae Hoon Kim & Seung Hyeon Park & Seoku Lee & A.V.S.L. Sai Bharadwaj & Yang Soo Lee & Chang Geun Yoo & Tae Hyun Kim, 2023. "A Review of Biomass-Derived UV-Shielding Materials for Bio-Composites," Energies, MDPI, vol. 16(5), pages 1-27, February.
    11. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Halder, Pobitra & Kundu, Sazal & Patel, Savankumar & Setiawan, Adi & Atkin, Rob & Parthasarthy, Rajarathinam & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Shah, Kalpit, 2019. "Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 268-292.
    13. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Alexandr Arshanitsa & Lilija Jashina & Matiss Pals & Jevgenija Ponomarenko & Yegor Akishin & Maja Zake, 2022. "Characteristics of the Main- and Side-Stream Products of Microwave Assisted Torrefaction of Lignocellulosic Biomass of Different Origination," Energies, MDPI, vol. 15(5), pages 1-20, March.
    15. Zhang, Li & Yao, Zonglu & Zhao, Lixin & Li, Zhihe & Yi, Weiming & Kang, Kang & Jia, Jixiu, 2021. "Synthesis and characterization of different activated biochar catalysts for removal of biomass pyrolysis tar," Energy, Elsevier, vol. 232(C).
    16. Park, Gwon Woo & Gong, Gyeongtaek & Joo, Jeong Chan & Song, Jinju & Lee, Jiye & Lee, Joon-Pyo & Kim, Hee Taek & Ryu, Mi Hee & Sirohi, Ranjna & Zhuang, Xinshu & Min, Kyoungseon, 2022. "Recent progress and challenges in biological degradation and biotechnological valorization of lignin as an emerging source of bioenergy: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    17. Kang, Qinhao & Mao, Xiao & Siyal, Asif Ali & Liu, Yang & Ran, Chunmei & Deng, Zeyu & Fu, Jie & Ao, Wenya & Song, Yongmeng & Dai, Jianjun, 2019. "Microwave-assisted pyrolysis of furfural residue in a continuously operated auger reactor: Characterization and analyses of condensates and non-condensable gases," Energy, Elsevier, vol. 187(C).
    18. Liu, Rongtang & Liu, Ming & Fan, Peipei & Zhao, Yongliang & Yan, Junjie, 2018. "Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis," Energy, Elsevier, vol. 165(PB), pages 140-152.
    19. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    20. Costa, Juliana E.B. & Barbosa, Andrey S. & Melo, Marcus A.F. & Melo, Dulce M.A. & Medeiros, Rodolfo L.B.A. & Braga, Renata M., 2022. "Renewable aromatics through catalytic pyrolysis of coconut fiber (Cocos nucífera Linn.) using low cost HZSM-5," Renewable Energy, Elsevier, vol. 191(C), pages 439-446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1673-1681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.