IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v233y2024ics0960148124012631.html
   My bibliography  Save this article

Study on detailed reaction pathways of sulfur-containing alkali lignin during supercritical water gasification for hydrogen production

Author

Listed:
  • Guo, Yilin
  • Wang, Chenxi
  • Chen, Jingwei
  • Leng, Erwei
  • E, Jiaqiang

Abstract

This work was focused on the evolution process of alkali lignin with a macromolecular structure in supercritical water gasification reactions. Using Quantum chemistry calculations and molecular dynamics simulations, the effects of different factors on the reaction process were studied, and the detailed pathways of main products were obtained. The results indicate that the presence of sulfur significantly inhibits the pyrolysis behavior of alkali lignin macromolecular structures. Sulfur significantly impacts the morphology of the intermediate molecular fragments of products containing 5–10 carbon atoms. Sulfur also has a significant inhibitory effect on the ring opening reaction of the benzene ring. Still, its effect on the final gas product distribution is not significant from a microscopic perspective. In addition, high temperature has a significant impact on improving the gasification efficiency of alkali lignin, while the scale of the reaction system has no significant effect on the distribution of gas products. This study will provide theoretical guidance for further improving the supercritical water gasification efficiency of lignin.

Suggested Citation

  • Guo, Yilin & Wang, Chenxi & Chen, Jingwei & Leng, Erwei & E, Jiaqiang, 2024. "Study on detailed reaction pathways of sulfur-containing alkali lignin during supercritical water gasification for hydrogen production," Renewable Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:renene:v:233:y:2024:i:c:s0960148124012631
    DOI: 10.1016/j.renene.2024.121195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124012631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chio, Chonlong & Sain, Mohini & Qin, Wensheng, 2019. "Lignin utilization: A review of lignin depolymerization from various aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 232-249.
    2. Zhang, Hang & Deng, Shengxiang & Cao, Xiaolin, 2018. "Density functional theory investigation of gasification mechanism of a lignin dimer with β-5 linkage," Renewable Energy, Elsevier, vol. 115(C), pages 937-945.
    3. He, Chao & Chen, Chia-Lung & Giannis, Apostolos & Yang, Yanhui & Wang, Jing-Yuan, 2014. "Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1127-1142.
    4. Huang, Zhiming & Bai, Yu & Chen, Jingwei & Wu, Xiaomin & E, Jiaqiang, 2024. "Molecular dynamics simulation on interaction effect of complex contents on supercritical water gasification of pig breeding wastewater for hydrogen production," Energy, Elsevier, vol. 294(C).
    5. Magdeldin, Mohamed & Järvinen, Mika, 2020. "Supercritical water gasification of Kraft black liquor: Process design, analysis, pulp mill integration and economic evaluation," Applied Energy, Elsevier, vol. 262(C).
    6. Hu, Yulin & Gong, Mengyue & Xing, Xuelian & Wang, Haoyu & Zeng, Yimin & Xu, Chunbao Charles, 2020. "Supercritical water gasification of biomass model compounds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    7. Chen, Jingwei & Wang, Chenxi & Shang, Wenxue & Bai, Yu & Wu, Xiaomin, 2023. "Study on the mechanisms of hydrogen production from alkali lignin gasification in supercritical water by ReaxFF molecular dynamics simulation," Energy, Elsevier, vol. 278(PA).
    8. Chen, Jingwei & Huang, Yizhen & Liu, Yang & Jiaqiang, E., 2024. "System development and thermodynamic performance analysis of a system integrating supercritical water gasification of black liquor with direct-reduced iron process," Energy, Elsevier, vol. 295(C).
    9. Guan, Qingqing & Wei, Chaohai & Shi, Huashun & Wu, Chaofei & Chai, Xin-Sheng, 2011. "Partial oxidative gasification of phenol for hydrogen in supercritical water," Applied Energy, Elsevier, vol. 88(8), pages 2612-2616, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Huang, Chengwei & Xu, Jialing & Xu, Shuai & Shan, Murong & Liu, Shanke & Yu, Lijun, 2024. "Optimizing H2 production from biomass: A machine learning-enhanced model of supercritical water gasification dynamics," Energy, Elsevier, vol. 312(C).
    3. Qiu, Yuxin & Liu, Yunyun & Zhang, Fengming & Rong, Weiqing, 2024. "Thermodynamic and exergy assessments of supercritical water gasification of oily sludge assisted by hydrothermal flame," Energy, Elsevier, vol. 296(C).
    4. Liu, Ruo-Ying & Lan, Hai-Na & Liu, Zhi-Hua & Li, Bing-Zhi & Yuan, Ying-Jin, 2024. "Microbial valorization of lignin toward coumarins: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    6. Artem A. Medvedev & Daria A. Beldova & Konstantin B. Kalmykov & Alexey V. Kravtsov & Marina A. Tedeeva & Leonid M. Kustov & Sergey F. Dunaev & Alexander L. Kustov, 2022. "Carbon Dioxide Assisted Conversion of Hydrolysis Lignin Catalyzed by Nickel Compounds," Energies, MDPI, vol. 15(18), pages 1-12, September.
    7. Lu, Xiaoluan & Ma, Xiaoqian & Chen, Xinfei, 2021. "Co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass: Fuel properties and heavy metal transformation behaviour of hydrochars," Energy, Elsevier, vol. 221(C).
    8. Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
    9. Wang, Yuanqing & Jin, Fangming & Zeng, Xu & Ma, Cuixiang & Wang, Fengwen & Yao, Guodong & Jing, Zhenzi, 2013. "Catalytic activity of Ni3S2 and effects of reactor wall in hydrogen production from water with hydrogen sulphide as a reducer under hydrothermal conditions," Applied Energy, Elsevier, vol. 104(C), pages 306-309.
    10. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    11. Samiee-Zafarghandi, Roudabeh & Karimi-Sabet, Javad & Abdoli, Mohammad Ali & Karbassi, Abdolreza, 2018. "Supercritical water gasification of microalga Chlorella PTCC 6010 for hydrogen production: Box-Behnken optimization and evaluating catalytic effect of MnO2/SiO2 and NiO/SiO2," Renewable Energy, Elsevier, vol. 126(C), pages 189-201.
    12. Mayank Patel & Nick Hill & Charles A. Mullen & Sampath Gunukula & William J. DeSisto, 2020. "Fast Pyrolysis of Lignin Pretreated with Magnesium Formate and Magnesium Hydroxide," Energies, MDPI, vol. 13(19), pages 1-10, September.
    13. Yu, Wei & Liu, Chao & Ban, Xijie & Xin, Liyong & Wang, Shukun, 2024. "Thermal stability of MDM and oxidative decomposition mechanism under the condition of air infiltration: A combined experimental, ReaxFF-MD and DFT study," Energy, Elsevier, vol. 310(C).
    14. Djukić-Vuković, A. & Mladenović, D. & Ivanović, J. & Pejin, J. & Mojović, L., 2019. "Towards sustainability of lactic acid and poly-lactic acid polymers production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 238-252.
    15. Qi, Xingang & Li, Xujun & Huang, Yong & Guo, Shenghui & Chen, Yunan & Jin, Hui & Guo, Liejin, 2024. "Combining experiment and theory to study the mechanism of lignin supercritical water gasification," Renewable Energy, Elsevier, vol. 230(C).
    16. Lin, Junhao & Sun, Shichang & Cui, Chongwei & Ma, Rui & Fang, Lin & Zhang, Peixin & Quan, Zonggang & Song, Xin & Yan, Jianglong & Luo, Juan, 2019. "Hydrogen-rich bio-gas generation and optimization in relation to heavy metals immobilization during Pd-catalyzed supercritical water gasification of sludge," Energy, Elsevier, vol. 189(C).
    17. Guo, Shenghui & Meng, Fanrui & Peng, Pai & Xu, Jialing & Jin, Hui & Chen, Yunan & Guo, Liejin, 2022. "Thermodynamic analysis of the superiority of the direct mass transfer design in the supercritical water gasification system," Energy, Elsevier, vol. 244(PA).
    18. Isa Hasanov & Merlin Raud & Timo Kikas, 2020. "The Role of Ionic Liquids in the Lignin Separation from Lignocellulosic Biomass," Energies, MDPI, vol. 13(18), pages 1-24, September.
    19. Hu, Yulin & Gong, Mengyue & Xing, Xuelian & Wang, Haoyu & Zeng, Yimin & Xu, Chunbao Charles, 2020. "Supercritical water gasification of biomass model compounds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    20. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:233:y:2024:i:c:s0960148124012631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.