IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp2318-2329.html
   My bibliography  Save this article

Heat transfer model for energy-active windows – An evaluation of efficient reuse of waste heat in buildings

Author

Listed:
  • Nourozi, Behrouz
  • Ploskić, Adnan
  • Chen, Yuxiang
  • Ning-Wei Chiu, Justin
  • Wang, Qian

Abstract

Minimizing thermal losses through windows and maintaining large glazing areas to provide adequate natural lighting in residential buildings are essential considerations for modern architecture, sustainability, and indoor comfort. In this study, a detailed heat transfer model for a novel energy-active window (EAW) is developed and validated to rate its thermal performance. An EAW utilizes low-grade heat to reduce building heat losses during the winter season. A thorough literature review was conducted to select the correct heat-transfer correlations for the investigated configuration. A two-dimensional finite differencing scheme was applied to approximate the vertical and horizontal temperature distribution across the EAW. Detailed temperature gradients, across the height and width of the window, were obtained. Thorough sensitivity analyses of the governing parameters were conducted to evaluate the windows’ thermal performance. The results indicate that EAWs have the potential to reduce heating power demand by approximately 2.2 W/m2floor area and 1.3 W/m2floor area at outdoor temperatures of −20 °C and −5 °C, respectively, for buildings with a window-to-floor area ratio of 10%. This potential increases proportionally with the ratio. The highest thermal efficiency of EAW is achieved when the temperature of the supplied air inside the EAW is equal to or above room temperature.

Suggested Citation

  • Nourozi, Behrouz & Ploskić, Adnan & Chen, Yuxiang & Ning-Wei Chiu, Justin & Wang, Qian, 2020. "Heat transfer model for energy-active windows – An evaluation of efficient reuse of waste heat in buildings," Renewable Energy, Elsevier, vol. 162(C), pages 2318-2329.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2318-2329
    DOI: 10.1016/j.renene.2020.10.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120316098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeyninejad Movassag, Sirous & Zamzamian, Kamiar, 2020. "Numerical investigation on the thermal performance of double glazing air flow window with integrated blinds," Renewable Energy, Elsevier, vol. 148(C), pages 852-863.
    2. Fang, Yueping & Memon, Saim & Peng, Jingqing & Tyrer, Mark & Ming, Tingzhen, 2020. "Solar thermal performance of two innovative configurations of air-vacuum layered triple glazed windows," Renewable Energy, Elsevier, vol. 150(C), pages 167-175.
    3. Sun, Yanyi & Liu, Dingming & Flor, Jan-Frederik & Shank, Katie & Baig, Hasan & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Mallick, Tapas K. & Wu, Yupeng, 2020. "Analysis of the daylight performance of window integrated photovoltaics systems," Renewable Energy, Elsevier, vol. 145(C), pages 153-163.
    4. Hu, Yue & Guo, Rui & Heiselberg, Per Kvols, 2020. "Performance and control strategy development of a PCM enhanced ventilated window system by a combined experimental and numerical study," Renewable Energy, Elsevier, vol. 155(C), pages 134-152.
    5. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    6. Casini, Marco, 2018. "Active dynamic windows for buildings: A review," Renewable Energy, Elsevier, vol. 119(C), pages 923-934.
    7. Zhang, Chong & Gang, Wenjie & Wang, Jinbo & Xu, Xinhua & Du, Qianzhou, 2019. "Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air," Energy, Elsevier, vol. 167(C), pages 1132-1143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borys Basok & Borys Davydenko & Volodymyr Novikov & Anatoliy M. Pavlenko & Maryna Novitska & Karolina Sadko & Svitlana Goncharuk, 2022. "Evaluation of Heat Transfer Rates through Transparent Dividing Structures," Energies, MDPI, vol. 15(13), pages 1-16, July.
    2. Borys Basok & Anatoliy Pavlenko & Volodymyr Novikov & Hanna Koshlak & Anita Ciosek & Maryna Moroz, 2024. "Comprehensive Investigation of the Thermal Performance of an Electrically Heated Double-Glazed Window: A Theoretical and Experimental Approach," Energies, MDPI, vol. 17(17), pages 1-18, September.
    3. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    4. Liu, Wenjie & Chow, Tin-tai, 2021. "Performance analysis of liquid-flow-window with submerged heat exchanger," Renewable Energy, Elsevier, vol. 168(C), pages 319-331.
    5. Behzadi, Amirmohammad & Sadrizadeh, Sasan, 2023. "Grid-tied solar and biomass hybridization for multi-family houses in Sweden: An optimal rule-based control framework through machine learning approach," Renewable Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    2. Tao, Yao & Fang, Xiang & Chew, Michael Yit Lin & Zhang, Lihai & Tu, Jiyuan & Shi, Long, 2021. "Predicting airflow in naturally ventilated double-skin facades: theoretical analysis and modelling," Renewable Energy, Elsevier, vol. 179(C), pages 1940-1954.
    3. Darya Andreeva & Darya Nemova & Evgeny Kotov, 2022. "Multi-Skin Adaptive Ventilated Facade: A Review," Energies, MDPI, vol. 15(9), pages 1-26, May.
    4. Jue Guo & Chong Zhang, 2022. "Utilization of Window System as Exhaust Air Heat Recovery Device and Its Energy Performance Evaluation: A Comparative Study," Energies, MDPI, vol. 15(9), pages 1-18, April.
    5. Chong Zhang & Jinbo Wang & Liao Li & Feifei Wang & Wenjie Gang, 2020. "Utilization of Earth-to-Air Heat Exchanger to Pre-Cool/Heat Ventilation Air and Its Annual Energy Performance Evaluation: A Case Study," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    6. Rodriguez-Ake, A. & Xamán, J. & Hernández-López, I. & Sauceda, D. & Carranza-Chávez, Francisco J. & Zavala-Guillén, I., 2022. "Numerical study and thermal evaluation of a triple glass window under Mexican warm climate conditions," Energy, Elsevier, vol. 239(PB).
    7. Wang, Chuyao & Li, Niansi & Gu, Tao & Ji, Jie & Yu, Bendong, 2022. "Design and performance investigation of a novel double-skin ventilated window integrated with air-purifying blind," Energy, Elsevier, vol. 254(PC).
    8. Ke, Yujie & Tan, Yutong & Feng, Chengchen & Chen, Cong & Lu, Qi & Xu, Qiyang & Wang, Tao & Liu, Hai & Liu, Xinghai & Peng, Jinqing & Long, Yi, 2022. "Tetra-Fish-Inspired aesthetic thermochromic windows toward Energy-Saving buildings," Applied Energy, Elsevier, vol. 315(C).
    9. Tao, Yao & Zhang, Haihua & Huang, Dongmei & Fan, Chuangang & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double skin façade with low-e glazing," Energy, Elsevier, vol. 229(C).
    10. Tao, Yao & Zhang, Haihua & Zhang, Lili & Zhang, Guomin & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double-skin façade in buildings," Renewable Energy, Elsevier, vol. 167(C), pages 184-198.
    11. Liu, Wenjie & Chow, Tin-tai, 2021. "Performance analysis of liquid-flow-window with submerged heat exchanger," Renewable Energy, Elsevier, vol. 168(C), pages 319-331.
    12. Karanafti, Aikaterina & Theodosiou, Theodoros & Tsikaloudaki, Katerina, 2022. "Assessment of buildings’ dynamic thermal insulation technologies-A review," Applied Energy, Elsevier, vol. 326(C).
    13. Yang, Xinpeng & Li, Dong & Yang, Ruitong & Ma, Yuxin & Duan, Yanjiao & Zhang, Chengjun & Hu, Wanyu & Arıcı, Müslüm, 2023. "Parameter global optimization and climatic adaptability analysis of PCM glazed system for long-term application," Renewable Energy, Elsevier, vol. 217(C).
    14. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    15. Han, Shulun & Sun, Yuying & Wang, Wei & Xu, Wenjing & Wei, Wenzhe, 2023. "Optimal design method for electrochromic window split-pane configuration to enhance building energy efficiency," Renewable Energy, Elsevier, vol. 219(P1).
    16. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    17. Sun, Yuying & Hao, Yingying & Wang, Dan & Wang, Wei & Deng, Shiming & Qi, Haoran & Xue, Peng, 2022. "A predictive control strategy for electrochromic glazing to balance the visual and thermal environmental requirements: Approach and energy-saving potential assessment," Renewable Energy, Elsevier, vol. 194(C), pages 334-348.
    18. Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
    19. Shaik, Saboor & Maduru, Venkata Ramana & Kirankumar, Gorantla & Arıcı, Müslüm & Ghosh, Aritra & Kontoleon, Karolos J. & Afzal, Asif, 2022. "Space-age energy saving, carbon emission mitigation and color rendering perspective of architectural antique stained glass windows," Energy, Elsevier, vol. 259(C).
    20. Luigi Maffei & Antonio Ciervo & Achille Perrotta & Massimiliano Masullo & Antonio Rosato, 2023. "Innovative Energy-Efficient Prefabricated Movable Buildings for Smart/Co-Working: Performance Assessment upon Varying Building Configurations," Sustainability, MDPI, vol. 15(12), pages 1-37, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2318-2329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.