IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp1380-1398.html
   My bibliography  Save this article

Investigation of thermal energy exchange potential of a gravitational water vortex

Author

Listed:
  • Tayyab, Muhammad
  • Cheema, Taqi Ahmad
  • Malik, Muhammad Sohail
  • Muzaffar, Atif
  • Sajid, Muhammad Bilal
  • Park, Cheol Woo

Abstract

The conversion of hydel energy of the water vortex formed under gravity is well known in the form of gravitational water vortex turbines; however, the thermal energy exchange potential of the gravitational water vortex flow (GWVF) is yet to be explored. Heat transfer investigation of GWVF is important because the natural gravity being the sole driving force can considerably reduce the pumping power requirement. The present study is the first of its kind to investigate hydro-thermal characteristics of the gravitational water vortex heat exchanger (GWVHE) using an in-house developed experimental test rig. The proposed heat exchanger involves a spiral channel of rectangular cross-section constructed around a cylindrical basin generating a GWVF. For various inlet mass flow rates and temperature combinations, energy balance between the two water streams as well as Nusselt number correlations are determined. Experimentally, a reasonable energy agreement has been achieved with a maximum loss of 30% among the two different inlet temperature tested conditions. Moreover, maximum rise in cold side temperature for the tested conditions was 6K, whereas for the hot side the measure in temperature drop was 8K. A numerical simulation has also been conducted to virtually predict the performance of the designed heat exchanger. The simulation process has shown an improved energy balance with a maximum loss of 10%. A comparison of the experimental and numerical results shows that a GWVF has the potential to effectively exchange the heat between the two fluid streams moving under gravity. The performance of the proposed GWVHE with a pipe in pipe heat exchanger (PPHE) with parallel flow configuration (without vortex) has also been modeled and compared. For the same conditions, the maximum difference in temperature drop and gain between GWVHE and PPHE is 5K and 2.5K, respectively. The present study may act as a benchmark for the new class of GWVF based heat exchangers.

Suggested Citation

  • Tayyab, Muhammad & Cheema, Taqi Ahmad & Malik, Muhammad Sohail & Muzaffar, Atif & Sajid, Muhammad Bilal & Park, Cheol Woo, 2020. "Investigation of thermal energy exchange potential of a gravitational water vortex," Renewable Energy, Elsevier, vol. 162(C), pages 1380-1398.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1380-1398
    DOI: 10.1016/j.renene.2020.08.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120313434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alam, Tabish & Kim, Man-Hoe, 2016. "Numerical study on thermal hydraulic performance improvement in solar air heater duct with semi ellipse shaped obstacles," Energy, Elsevier, vol. 112(C), pages 588-598.
    2. Myeong Jin Ko, 2015. "Analysis and Optimization Design of a Solar Water Heating System Based on Life Cycle Cost Using a Genetic Algorithm," Energies, MDPI, vol. 8(10), pages 1-24, October.
    3. Varun, & Saini, R.P. & Singal, S.K., 2008. "Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on the absorber plate," Renewable Energy, Elsevier, vol. 33(6), pages 1398-1405.
    4. Dhakal, Sagar & Timilsina, Ashesh B. & Dhakal, Rabin & Fuyal, Dinesh & Bajracharya, Tri R. & Pandit, Hari P. & Amatya, Nagendra & Nakarmi, Amrit M., 2015. "Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 662-669.
    5. Saleem, Abdul Samad & Cheema, Taqi Ahmad & Ullah, Rizwan & Ahmad, Sarvat Mushtaq & Chattha, Javed Ahmad & Akbar, Bilal & Park, Cheol Woo, 2020. "Parametric study of single-stage gravitational water vortex turbine with cylindrical basin," Energy, Elsevier, vol. 200(C).
    6. Alam, Tabish & Kim, Man-Hoe, 2018. "A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 813-839.
    7. Hales, Alastair & Jiang, Xi, 2018. "A review of piezoelectric fans for low energy cooling of power electronics," Applied Energy, Elsevier, vol. 215(C), pages 321-337.
    8. Myeong Jin Ko, 2015. "A Novel Design Method for Optimizing an Indirect Forced Circulation Solar Water Heating System Based on Life Cycle Cost Using a Genetic Algorithm," Energies, MDPI, vol. 8(10), pages 1-26, October.
    9. Myeong Jin Ko, 2015. "Multi-Objective Optimization Design for Indirect Forced-Circulation Solar Water Heating System Using NSGA-II," Energies, MDPI, vol. 8(11), pages 1-25, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edirisinghe, Dylan S. & Yang, Ho-Seong & Gunawardane, S.D.G.S.P. & Lee, Young-Ho, 2022. "Enhancing the performance of gravitational water vortex turbine by flow simulation analysis," Renewable Energy, Elsevier, vol. 194(C), pages 163-180.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
    2. Xun Yang & Yong Wang & Teng Xiong, 2017. "Numerical and Experimental Study on a Solar Water Heating System in Lhasa," Energies, MDPI, vol. 10(7), pages 1-13, July.
    3. Sajid Mehmood & Serguey A. Maximov & Hannah Chalmers & Daniel Friedrich, 2020. "Energetic, Economic and Environmental (3E) Assessment and Design of Solar-Powered HVAC Systems in Pakistan," Energies, MDPI, vol. 13(17), pages 1-25, August.
    4. Carlos J. Porras-Prieto & Susana Benedicto-Schönemann & Fernando R. Mazarrón & Rosa M. Benavente, 2016. "Profitability Variations of a Solar System with an Evacuated Tube Collector According to Schedules and Frequency of Hot Water Demand," Energies, MDPI, vol. 9(12), pages 1-15, December.
    5. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    6. Zakariya Kaneesamkandi & Abdulaziz Almujahid & Basharat Salim, 2022. "Selection of an Appropriate Solar Thermal Technology for Solar Vapor Absorption Cooling—An MADM Approach," Energies, MDPI, vol. 15(5), pages 1-25, March.
    7. Alam, Tabish & Kim, Man-Hoe, 2018. "A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 813-839.
    8. Velásquez, Laura & Romero-Menco, Fredys & Rubio-Clemente, Ainhoa & Posada, Alejandro & Chica, Edwin, 2024. "Numerical optimization and experimental validation of the runner of a gravitational water vortex hydraulic turbine with a spiral inlet channel and a conical basin," Renewable Energy, Elsevier, vol. 220(C).
    9. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    10. Myeong Jin Ko, 2015. "Multi-Objective Optimization Design for Indirect Forced-Circulation Solar Water Heating System Using NSGA-II," Energies, MDPI, vol. 8(11), pages 1-25, November.
    11. Nosare Maika & Wenxian Lin & Mehdi Khatamifar, 2023. "A Review of Gravitational Water Vortex Hydro Turbine Systems for Hydropower Generation," Energies, MDPI, vol. 16(14), pages 1-39, July.
    12. Kumar, Rajneesh & Kumar, Anoop & Goel, Varun, 2019. "Performance improvement and development of correlation for friction factor and heat transfer using computational fluid dynamics for ribbed triangular duct solar air heater," Renewable Energy, Elsevier, vol. 131(C), pages 788-799.
    13. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    14. Afzal, Asif & Buradi, Abdulrajak & Jilte, Ravindra & Shaik, Saboor & Kaladgi, Abdul Razak & Arıcı, Muslum & Lee, Chew Tin & Nižetić, Sandro, 2023. "Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    15. Varun, & Patnaik, Amar & Saini, R.P. & Singal, S.K. & Siddhartha,, 2009. "Performance prediction of solar air heater having roughened duct provided with transverse and inclined ribs as artificial roughness," Renewable Energy, Elsevier, vol. 34(12), pages 2914-2922.
    16. Kumar, Rajneesh & Goel, Varun & Kumar, Anoop, 2018. "Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis," Renewable Energy, Elsevier, vol. 115(C), pages 824-835.
    17. Martí Comamala & Ivan Ruiz Cózar & Albert Massaguer & Eduard Massaguer & Toni Pujol, 2018. "Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator," Energies, MDPI, vol. 11(12), pages 1-28, November.
    18. Zhang, Wujie & Yang, Fubin & Zhang, Hongguang & Ping, Xu & Yan, Dong & Wang, Chongyao, 2022. "Application of two-phase pulsating flow in organic Rankine cycle system for diesel engine waste heat recovery," Energy, Elsevier, vol. 243(C).
    19. El-Sebaii, A.A. & Al-Snani, H., 2010. "Effect of selective coating on thermal performance of flat plate solar air heaters," Energy, Elsevier, vol. 35(4), pages 1820-1828.
    20. Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1380-1398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.