IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p595-d486599.html
   My bibliography  Save this article

Assessment of TiO 2 Nanoconcentration and Twin Impingement Jet of Heat Transfer Enhancement—A Statistical Approach Using Response Surface Methodology

Author

Listed:
  • Mahir Faris Abdullah

    (Department of Mechanical and Manufacturing Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
    Department of Refrigeration and Air Conditioning Engineering, Al-Rafidian University College, Baghdad 10001, Iraq)

  • Rozli Zulkifli

    (Department of Mechanical and Manufacturing Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Hazim Moria

    (Department of Mechanical Engineering Technology, Yanbu Industrial College, Yanbu Al-Sinaiyah 41912, Saudi Arabia)

  • Asmaa Soheil Najm

    (Department of Electrical and Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Zambri Harun

    (Department of Mechanical and Manufacturing Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Shahrir Abdullah

    (Department of Mechanical and Manufacturing Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Wan Aizon Wan Ghopa

    (Department of Mechanical and Manufacturing Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Noor Humam Sulaiman

    (Department of Mechanical and Manufacturing Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

Abstract

Impinging jets are considered to be a well-known technique that offers high local heat transfer rates. No correlation could be established in the literature between the significant parameters and the Nusselt number, and investigation of the interactions between the correlated factors has not been conducted before. An experimental analysis based on the twin impingement jet mechanism was achieved to study the heat transfer rate pertaining to the surface plate. In the current paper, four influential parameters were studied: the spacing between nozzles, velocity, concentration of Nano solution coating and nozzle-plate distance, which are considered to be effective parameters for the thermal conductivity and the heat transfer coefficient of TiO 2 nanoparticle, an X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis were done, which highlighted the structure and showed that the nanosolution coated the surface homogenously. Moreover, a comparison was done for the experimental results with that of the predicted responses generated by the Design Expert software, Version 7 User’s Guide, USA . A response surface methodology (RSM) was employed to improve a mathematical model by accounting for a D-optimal design. In addition, the analysis of variance (ANOVA) was employed for testing the significance of the models. The maximum Nu of 91.47, where H = S = 1 cm; Reynolds number of 17,000, and TiO 2 nanoparticle concentration of 0.5% M. The highest improvement rate in Nusselt was about 26%, achieved with TiO 2 Nanoparticle, when S = 3 cm, H = 6 cm and TiO 2 nanoparticle = 0.5 M. Furthermore, based on the statistical analysis, the expected values were found to be in satisfactory agreement with that of the empirical data, which was conducted by accounting for the proposed models’ excellent predictability. Multivariate approaches are very useful for researchers, as well as for applications in industrial processes, as they lead to increased efficiency and reduced costs, so the presented results of this work could encourage the overall uses of multivariate methods in these fields. Hypotheses : A comparison was done for the predicted responses generated by the Design Expert software with the experimental results and then studied to verify the following hypotheses: ► Preparation of three concentrations of TiO 2 nanosolution was done and studied. ► The heat transfer rate could be increased by surface coating with TiO 2 nanoparticle. ► The heat transfer could be improved by the impingement jet technique with suitable adjustments.

Suggested Citation

  • Mahir Faris Abdullah & Rozli Zulkifli & Hazim Moria & Asmaa Soheil Najm & Zambri Harun & Shahrir Abdullah & Wan Aizon Wan Ghopa & Noor Humam Sulaiman, 2021. "Assessment of TiO 2 Nanoconcentration and Twin Impingement Jet of Heat Transfer Enhancement—A Statistical Approach Using Response Surface Methodology," Energies, MDPI, vol. 14(3), pages 1-29, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:595-:d:486599
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alam, Tabish & Kim, Man-Hoe, 2018. "A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 813-839.
    2. Mahir Faris Abdullah & Rozli Zulkifli & Zambri Harun & Shahrir Abdullah & Wan Aizon Wan Ghopa, 2018. "Experimental and Numerical Simulation of the Heat Transfer Enhancement on the Twin Impingement Jet Mechanism," Energies, MDPI, vol. 11(4), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    2. Wei Zhang & Huiren Zhu & Guangchao Li, 2020. "Experimental Study of Heat Transfer on the Internal Surfaces of a Double-Wall Structure with Pin Fin Array," Energies, MDPI, vol. 13(24), pages 1-17, December.
    3. Martí Comamala & Ivan Ruiz Cózar & Albert Massaguer & Eduard Massaguer & Toni Pujol, 2018. "Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator," Energies, MDPI, vol. 11(12), pages 1-28, November.
    4. Zhang, Wujie & Yang, Fubin & Zhang, Hongguang & Ping, Xu & Yan, Dong & Wang, Chongyao, 2022. "Application of two-phase pulsating flow in organic Rankine cycle system for diesel engine waste heat recovery," Energy, Elsevier, vol. 243(C).
    5. Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.
    6. Mashoofi Maleki, Nemat & Pourahmad, Saman & Haghighi Khoshkhoo, Ramin & Ameri, Mohammad, 2023. "Performance improvement of a double tube heat exchanger using novel electromagnetic vibration (EMV) method in the presence of Al2O3-water and CuO-water nanofluid; An experimental study," Energy, Elsevier, vol. 281(C).
    7. Mousa, Mohamed H. & Miljkovic, Nenad & Nawaz, Kashif, 2021. "Review of heat transfer enhancement techniques for single phase flows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Feng, Zhenfei & Jiang, Ping & Zheng, Siyao & Zhang, Qingyuan & Chen, Zhen & Guo, Fangwen & Zhang, Jinxin, 2023. "Experimental and numerical investigations on the effects of insertion-type longitudinal vortex generators on flow and heat transfer characteristics in square minichannels," Energy, Elsevier, vol. 278(PA).
    9. Men, Yukui & Liang, Caihang & Hu, Jiali & Zhang, Rui & He, Zhipeng & Zeng, Si & Sun, Tiezhu & Chen, Bo, 2023. "Energy, exergy, economic and environmental analysis of a solar-driven hollow fibre membrane dehumidification system," Renewable Energy, Elsevier, vol. 217(C).
    10. Zhe Wang & Fenghui Han & Yulong Ji & Wenhua Li, 2020. "Performance and Exergy Transfer Analysis of Heat Exchangers with Graphene Nanofluids in Seawater Source Marine Heat Pump System," Energies, MDPI, vol. 13(7), pages 1-17, April.
    11. Chen, Jingtan & Ahmad, Shakeel & Cai, Junjie & Liu, Huaqiang & Lau, Kwun Ting & Zhao, Jiyun, 2021. "Latest progress on nanotechnology aided boiling heat transfer enhancement: A review," Energy, Elsevier, vol. 215(PA).
    12. He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).
    13. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    14. Kumar, Rajneesh, 2024. "Improved solar-thermal heat exchanger for space heating with surface roughness: A numerical parametric investigation and its optimization," Renewable Energy, Elsevier, vol. 226(C).
    15. Gürdal, Mehmet & Arslan, Kamil & Gedik, Engin & Minea, Alina Adriana, 2022. "Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. Ajagekar, Akshay & You, Fengqi, 2019. "Quantum computing for energy systems optimization: Challenges and opportunities," Energy, Elsevier, vol. 179(C), pages 76-89.
    17. Seungjin Lee & Yoon Seok Kim & Joong Yull Park, 2018. "Numerical Investigation on the Effects of Baffles with Various Thermal and Geometrical Conditions on Thermo-Fluid Dynamics and Kinetic Power of a Solar Updraft Tower," Energies, MDPI, vol. 11(9), pages 1-14, August.
    18. Tayyab, Muhammad & Cheema, Taqi Ahmad & Malik, Muhammad Sohail & Muzaffar, Atif & Sajid, Muhammad Bilal & Park, Cheol Woo, 2020. "Investigation of thermal energy exchange potential of a gravitational water vortex," Renewable Energy, Elsevier, vol. 162(C), pages 1380-1398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:595-:d:486599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.