Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2017.09.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Alam, Tabish & Kim, Man-Hoe, 2016. "Numerical study on thermal hydraulic performance improvement in solar air heater duct with semi ellipse shaped obstacles," Energy, Elsevier, vol. 112(C), pages 588-598.
- Kumar, Rajneesh & Varun, & Kumar, Anoop, 2016. "Thermal and fluid dynamic characteristics of flow through triangular cross-sectional duct: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 123-140.
- Chaube, Alok & Sahoo, P.K. & Solanki, S.C., 2006. "Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater," Renewable Energy, Elsevier, vol. 31(3), pages 317-331.
- Singh, Sukhmeet & Singh, Bikramjit & Hans, V.S. & Gill, R.S., 2015. "CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib," Energy, Elsevier, vol. 84(C), pages 509-517.
- Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
- Bhushan, Brij & Singh, Ranjit, 2010. "A review on methodology of artificial roughness used in duct of solar air heaters," Energy, Elsevier, vol. 35(1), pages 202-212.
- Layek, Apurba & Saini, J.S. & Solanki, S.C., 2009. "Effect of chamfering on heat transfer and friction characteristics of solar air heater having absorber plate roughened with compound turbulators," Renewable Energy, Elsevier, vol. 34(5), pages 1292-1298.
- Bhagoria, J.L & Saini, J.S & Solanki, S.C, 2002. "Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate," Renewable Energy, Elsevier, vol. 25(3), pages 341-369.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sivakandhan, C. & Arjunan, T.V. & Matheswaran, M.M., 2020. "Thermohydraulic performance enhancement of a new hybrid duct solar air heater with inclined rib roughness," Renewable Energy, Elsevier, vol. 147(P1), pages 2345-2357.
- Varun Kumar B. & G. Manikandan & P. Rajesh Kanna & Dawid Taler & Jan Taler & Marzena Nowak-Ocłoń & Karol Mzyk & Hoong Thiam Toh, 2018. "A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review," Energies, MDPI, vol. 11(11), pages 1-20, November.
- Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
- Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
- Choi, Hwiung & Choi, Kwanghwan, 2022. "Parametric study of a novel air-based photovoltaic-thermal collector with a transverse triangular-shaped block," Renewable Energy, Elsevier, vol. 201(P1), pages 96-110.
- Kumar, Amit & Akshayveer, & Singh, Ajeet Pratap & Singh, O.P., 2020. "Efficient designs of double-pass curved solar air heaters," Renewable Energy, Elsevier, vol. 160(C), pages 1105-1118.
- Khanlari, Ataollah & Tuncer, Azim Doğuş, 2023. "Analysis of an infrared-assisted triple-flow prototype solar drying system with nano-embedded absorber coating: An experimental and numerical study," Renewable Energy, Elsevier, vol. 216(C).
- Tuncer, Azim Doğuş & Khanlari, Ataollah & Sözen, Adnan & Gürbüz, Emine Yağız & Şirin, Ceylin & Gungor, Afsin, 2020. "Energy-exergy and enviro-economic survey of solar air heaters with various air channel modifications," Renewable Energy, Elsevier, vol. 160(C), pages 67-85.
- Anil Singh Yadav & Tabish Alam & Gaurav Gupta & Rajiv Saxena & Naveen Kumar Gupta & K. Viswanath Allamraju & Rahul Kumar & Neeraj Sharma & Abhishek Sharma & Utkarsh Pandey & Yogesh Agrawal, 2022. "A Numerical Investigation of an Artificially Roughened Solar Air Heater," Energies, MDPI, vol. 15(21), pages 1-27, October.
- Das, Biplab & Mondol, Jayanta Deb & Debnath, Suman & Pugsley, Adrian & Smyth, Mervyn & Zacharopoulos, A., 2020. "Effect of the absorber surface roughness on the performance of a solar air collector: An experimental investigation," Renewable Energy, Elsevier, vol. 152(C), pages 567-578.
- Jin, Dongxu & Quan, Shenglin & Zuo, Jianguo & Xu, Shiming, 2019. "Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs," Renewable Energy, Elsevier, vol. 134(C), pages 78-88.
- Afshari, Faraz & Sözen, Adnan & Khanlari, Ataollah & Tuncer, Azim Doğuş & Şirin, Ceylin, 2020. "Effect of turbulator modifications on the thermal performance of cost-effective alternative solar air heater," Renewable Energy, Elsevier, vol. 158(C), pages 297-310.
- Byeong-Hwa An & Kwang-Hwan Choi & Hwi-Ung Choi, 2023. "Heat Transfer Augmentation and Friction Factor Due to the Arrangement of Rectangular Turbulators in a Finned Air Channel of a Solar Air Heater," Energies, MDPI, vol. 16(19), pages 1-18, September.
- Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
- Kumar, Rajneesh & Goel, Varun, 2021. "Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses," Renewable Energy, Elsevier, vol. 172(C), pages 1267-1278.
- Choi, Hwi-Ung & Choi, Kwang-Hwan, 2023. "Numerical study on the performance of a solar-assisted heat pump coupled with a photovoltaic-thermal air heater," Energy, Elsevier, vol. 285(C).
- Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
- Bezbaruah, Parag Jyoti & Das, Rajat Subhra & Sarkar, Bikash Kumar, 2021. "Experimental and numerical analysis of solar air heater accoutered with modified conical vortex generators in a staggered fashion," Renewable Energy, Elsevier, vol. 180(C), pages 109-131.
- Kumar, Rajneesh & Sharma, Akshay & Goel, Varun & Sharma, Rajesh & Sethi, Muneesh & Tyagi, V.V., 2023. "An experimental investigation of new roughness patterns (dimples with alternative protrusions) for the performance enhancement of solar air heater," Renewable Energy, Elsevier, vol. 211(C), pages 964-974.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
- Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
- Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
- Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
- Singh, Amritpal & Singh, Sukhmeet, 2017. "CFD investigation on roughness pitch variation in non-uniform cross-section transverse rib roughness on Nusselt number and friction factor characteristics of solar air heater duct," Energy, Elsevier, vol. 128(C), pages 109-127.
- Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
- Varun Kumar B. & G. Manikandan & P. Rajesh Kanna & Dawid Taler & Jan Taler & Marzena Nowak-Ocłoń & Karol Mzyk & Hoong Thiam Toh, 2018. "A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review," Energies, MDPI, vol. 11(11), pages 1-20, November.
- Thakur, Deep Singh & Khan, Mohd. Kaleem & Pathak, Manabendra, 2017. "Performance evaluation of solar air heater with novel hyperbolic rib geometry," Renewable Energy, Elsevier, vol. 105(C), pages 786-797.
- Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
- Kumar, Rajneesh & Goel, Varun, 2021. "Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses," Renewable Energy, Elsevier, vol. 172(C), pages 1267-1278.
- Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B. & Chamoli, Sunil, 2016. "A review of CFD methodology used in literature for predicting thermo-hydraulic performance of a roughened solar air heater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 550-605.
- Manjunath, M.S. & Karanth, K.Vasudeva & Sharma, N.Yagnesh, 2017. "Numerical analysis of the influence of spherical turbulence generators on heat transfer enhancement of flat plate solar air heater," Energy, Elsevier, vol. 121(C), pages 616-630.
- Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
- Jin, Dongxu & Zhang, Manman & Wang, Ping & Xu, Shasha, 2015. "Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 89(C), pages 178-190.
- Kumar, Rajneesh & Kumar, Anoop & Goel, Varun, 2019. "Performance improvement and development of correlation for friction factor and heat transfer using computational fluid dynamics for ribbed triangular duct solar air heater," Renewable Energy, Elsevier, vol. 131(C), pages 788-799.
- Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "Numerical investigation of flow through inclined fins under the absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 141(C), pages 468-481.
- Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater," Renewable Energy, Elsevier, vol. 136(C), pages 48-68.
- Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
- Singh, Sukhmeet & Singh, Bikramjit & Hans, V.S. & Gill, R.S., 2015. "CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib," Energy, Elsevier, vol. 84(C), pages 509-517.
- Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
More about this item
Keywords
Rib roughened absorber plate; Forward facing chamfered rib elements; Nusselt number enhancement; Friction penalty; Correlations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:824-835. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.