IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp1125-1131.html
   My bibliography  Save this article

Integrated ethanol fermentation and acetone-butanol-ethanol fermentation using sweet sorghum bagasse

Author

Listed:
  • Su, Changsheng
  • Qi, Li
  • Cai, Di
  • Chen, Bo
  • Chen, Huidong
  • Zhang, Changwei
  • Si, Zhihao
  • Wang, Ze
  • Li, Guozhen
  • Qin, Peiyong

Abstract

This paper aimed to use the major part of carbohydrate fractions in enzymatic hydrolysate of sweet sorghum bagasse, acetone-butanol-ethanol (ABE) fermentation was performed following the ethanol fermentation of hexoses. In batch ethanol fermentation stage, 50.8 ± 3.2 g/L of ethanol was produced from 111.5 g/L of glucose in hydrolysate. After ethanol recovery by batch vacuum distillation, 123.6 ± 15.6 g/L of ethanol was obtained in the distillate, while 47.2 ± 2.5 g/L of xylose was remained in the fermentation broth. The ethanol-free broth was further used as the substrate for ABE fermentation. Compared with yeast remaining scenario, the cell-free ethanol fermentation broth showed a better performance in ABE production. 7.37 ± 0.33 g/L of butanol and 10.93 ± 0.54 g/L of ABE solvent were produced after 120 h of batch fermentation. Based on the biorefinery strategy that cascade two-types of fermentation process, the overall solvents yield boosted significantly, about 144.8 g of ethanol, 17.3 g of butanol and 4.8 g of acetone can be produced from 1 kg sweet sorghum bagasse.

Suggested Citation

  • Su, Changsheng & Qi, Li & Cai, Di & Chen, Bo & Chen, Huidong & Zhang, Changwei & Si, Zhihao & Wang, Ze & Li, Guozhen & Qin, Peiyong, 2020. "Integrated ethanol fermentation and acetone-butanol-ethanol fermentation using sweet sorghum bagasse," Renewable Energy, Elsevier, vol. 162(C), pages 1125-1131.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1125-1131
    DOI: 10.1016/j.renene.2020.07.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    2. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    3. Zhang, Changwei & Chen, Huidong & Pang, Siyu & Su, Changsheng & Lv, Meng & An, Na & Wang, Kua & Cai, Di & Qin, Peiyong, 2020. "Importance of redefinition of corn stover harvest time to enhancing non-food bio-ethanol production," Renewable Energy, Elsevier, vol. 146(C), pages 1444-1450.
    4. Chen, Hongzhang & Fu, Xiaoguo, 2016. "Industrial technologies for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 468-478.
    5. Cuevas, Manuel & Sánchez, Sebastián & García, Juan F. & Baeza, Jaime & Parra, Carolina & Freer, Juanita, 2015. "Enhanced ethanol production by simultaneous saccharification and fermentation of pretreated olive stones," Renewable Energy, Elsevier, vol. 74(C), pages 839-847.
    6. Zhang, Changwei & Wen, Hao & Chen, Changjing & Cai, Di & Fu, Chaohui & Li, Ping & Qin, Peiyong & Tan, Tianwei, 2019. "Simultaneous saccharification and juice co-fermentation for high-titer ethanol production using sweet sorghum stalk," Renewable Energy, Elsevier, vol. 134(C), pages 44-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebrahimian, Farinaz & Karimi, Keikhosro & Angelidaki, Irini, 2022. "Coproduction of hydrogen, butanol, butanediol, ethanol, and biogas from the organic fraction of municipal solid waste using bacterial cocultivation followed by anaerobic digestion," Renewable Energy, Elsevier, vol. 194(C), pages 552-560.
    2. Zhang, Changwei & Si, Zhihao & Zhang, Lihe & Li, Guozhen & Wen, Jieyi & Su, Changsheng & Wu, Yilu & Zhang, Xu & Cai, Di & Qin, Peiyong, 2022. "Reusing the acetone-butanol-ethanol separated broth as the lignocellulose pretreatment liquor for fresh corn stalk biorefinery," Renewable Energy, Elsevier, vol. 191(C), pages 807-818.
    3. Liu, Yao & Zheng, Xiaojie & Tao, Shunhui & Hu, Lei & Zhang, Xiaodong & Lin, Xiaoqing, 2021. "Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation," Renewable Energy, Elsevier, vol. 177(C), pages 259-267.
    4. Li, Jun & Zhao, Renyong & Xu, Youjie & Wu, Xiaorong & Bean, Scott R. & Wang, Donghai, 2022. "Fuel ethanol production from starchy grain and other crops: An overview on feedstocks, affecting factors, and technical advances," Renewable Energy, Elsevier, vol. 188(C), pages 223-239.
    5. Yaashikaa, P.R. & Kumar, P. Senthil, 2022. "Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review," MPRA Paper 112234, University Library of Munich, Germany.
    6. Li, Jianzheng & Wang, Xin & Fan, Yiyang & Chen, Qiyi & Meng, Jia, 2024. "Biosynthesis of NPs CuS/Cu2S and self-assembly with C. beijerinckii for improving lignocellulosic butanol production in staged butyrate-butanol fermentation process," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carrillo-Nieves, Danay & Rostro Alanís, Magdalena J. & de la Cruz Quiroz, Reynaldo & Ruiz, Héctor A. & Iqbal, Hafiz M.N. & Parra-Saldívar, Roberto, 2019. "Current status and future trends of bioethanol production from agro-industrial wastes in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 63-74.
    2. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    3. Adekunle, Ademola & Orsat, Valerie & Raghavan, Vijaya, 2016. "Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 518-530.
    4. Ben Atitallah, Imen & Ntaikou, Ioanna & Antonopoulou, Georgia & Alexandropoulou, Maria & Brysch-Herzberg, Michael & Nasri, Moncef & Lyberatos, Gerasimos & Mechichi, Tahar, 2020. "Evaluation of the non-conventional yeast strain Wickerhamomyces anomalus (Pichia anomala) X19 for enhanced bioethanol production using date palm sap as renewable feedstock," Renewable Energy, Elsevier, vol. 154(C), pages 71-81.
    5. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Zhang, Changwei & Chen, Huidong & Pang, Siyu & Su, Changsheng & Lv, Meng & An, Na & Wang, Kua & Cai, Di & Qin, Peiyong, 2020. "Importance of redefinition of corn stover harvest time to enhancing non-food bio-ethanol production," Renewable Energy, Elsevier, vol. 146(C), pages 1444-1450.
    7. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    8. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    9. Michailos, Stavros & Parker, David & Webb, Colin, 2017. "Design, Sustainability Analysis and Multiobjective Optimisation of Ethanol Production via Syngas Fermentation," MPRA Paper 87640, University Library of Munich, Germany.
    10. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    11. Mariana S. T. Amândio & Joana M. Pereira & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2022. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy," Energies, MDPI, vol. 15(11), pages 1-31, June.
    12. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    13. Rafael Robina Ramírez & Pedro R. Palos-Sánchez, 2018. "Environmental Firms’ Better Attitude towards Nature in the Context of Corporate Compliance," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    14. Shijia Zhang & Zhichao Wang & Jiong Shen & Xuantong Chen & Juan Zhang, 2023. "Isolation of an Acidophilic Cellulolytic Bacterial Strain and Its Cellulase Production Characteristics," Agriculture, MDPI, vol. 13(7), pages 1-19, June.
    15. Kirsten M. Davis & Marjorie Rover & Robert C. Brown & Xianglan Bai & Zhiyou Wen & Laura R. Jarboe, 2016. "Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach," Energies, MDPI, vol. 9(10), pages 1-28, October.
    16. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    17. Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    18. Guilherme, Ederson Paulo Xavier & Zanphorlin, Leticia Maria & Sousa, Amanda Silva & Miyamoto, Renan Yuji & Bruziquesi, Carlos Giovani Oliveira & Mesquita, Bruna Mara Aparecida de Carvalho & Santos, Se, 2022. "Simultaneous saccharification isomerization and Co-fermentation – SSICF: A new process concept for second-generation ethanol biorefineries combining immobilized recombinant enzymes and non-GMO Sacchar," Renewable Energy, Elsevier, vol. 182(C), pages 274-284.
    19. Kyriakou, Maria & Patsalou, Maria & Xiaris, Nikolas & Tsevis, Athanasios & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2020. "Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery," Renewable Energy, Elsevier, vol. 155(C), pages 53-64.
    20. Nayak, Abhishek & Pulidindi, Indra Neel & Rao, Chinta Sankar, 2020. "Novel strategies for glucose production from biomass using heteropoly acid catalyst," Renewable Energy, Elsevier, vol. 159(C), pages 215-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1125-1131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.