IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/87640.html
   My bibliography  Save this paper

Design, Sustainability Analysis and Multiobjective Optimisation of Ethanol Production via Syngas Fermentation

Author

Listed:
  • Michailos, Stavros
  • Parker, David
  • Webb, Colin

Abstract

Ethanol production from non-edible feedstock has received significant attention over the past two decades. The utilisation of agricultural residues within the biorefinery concept can positively contribute to the renewable production of fuels. To this end, this study proposes the utilisation of bagasse in a hybrid conversion route for ethanol production. The main steps of the process are the gasification of the raw material followed by syngas fermentation to ethanol. Aspen plus was utilised to rigorously design the biorefinery coupled with Matlab to perform process optimisation. Based on the simulations, ethanol can be produced at a rate of 283 L per dry tonne of bagasse, achieving energy efficiency of 43% and according to the environmental analysis, is associated with low CO2 emissions. The conduction of a typical discounted cash flow analysis resulted in a minimum ethanol selling price of 0.69 $ L−1. The study concludes with multiobjective optimisation setting as objective functions the conflictive concepts of total investment costs and exergy efficiency. The total cost rate of the system is minimised whereas the exergy efficiency is maximised by using a genetic algorithm. This way, various process configurations and trade-offs between the investigated criteria were analysed for the proposed biorefinery system.

Suggested Citation

  • Michailos, Stavros & Parker, David & Webb, Colin, 2017. "Design, Sustainability Analysis and Multiobjective Optimisation of Ethanol Production via Syngas Fermentation," MPRA Paper 87640, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:87640
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/87640/1/MPRA_paper_87640.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    2. Sudiro, Maria & Bertucco, Alberto, 2009. "Production of synthetic gasoline and diesel fuel by alternative processes using natural gas and coal: Process simulation and optimization," Energy, Elsevier, vol. 34(12), pages 2206-2214.
    3. Erlich, Catharina & Fransson, Torsten H., 2011. "Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study," Applied Energy, Elsevier, vol. 88(3), pages 899-908, March.
    4. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    5. Hanno Richter & Michael E. Martin & Largus T. Angenent, 2013. "A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol," Energies, MDPI, vol. 6(8), pages 1-14, August.
    6. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    7. He, Jie & Zhang, Wennan, 2011. "Techno-economic evaluation of thermo-chemical biomass-to-ethanol," Applied Energy, Elsevier, vol. 88(4), pages 1224-1232, April.
    8. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    9. Mohr, Alison & Raman, Sujatha, 2013. "Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels," Energy Policy, Elsevier, vol. 63(C), pages 114-122.
    10. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    11. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sahar Safarian & Runar Unnthorsson, 2018. "An Assessment of the Sustainability of Lignocellulosic Bioethanol Production from Wastes in Iceland," Energies, MDPI, vol. 11(6), pages 1-16, June.
    2. Sahar Safarian & Seyed Mohammad Ebrahimi Saryazdi & Runar Unnthorsson & Christiaan Richter, 2021. "Artificial Neural Network Modeling of Bioethanol Production Via Syngas Fermentation," Biophysical Economics and Resource Quality, Springer, vol. 6(1), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Shengdong & Huang, Wenjing & Huang, Wangxiang & Wang, Ke & Chen, Qiming & Wu, Yuanxin, 2015. "Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent," Applied Energy, Elsevier, vol. 154(C), pages 190-196.
    2. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    3. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    4. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    5. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    7. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    8. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    9. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    10. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    11. Lorenzo Di Lucia & Barbara Ribeiro, 2018. "Enacting Responsibilities in Landscape Design: The Case of Advanced Biofuels," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    12. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    13. Nayak, Abhishek & Pulidindi, Indra Neel & Rao, Chinta Sankar, 2020. "Novel strategies for glucose production from biomass using heteropoly acid catalyst," Renewable Energy, Elsevier, vol. 159(C), pages 215-220.
    14. Yang, Chunlei & Dong, Lifeng & Gao, Yanhua & Jia, Peng & Diao, Qiyu, 2021. "Engineering acetogens for biofuel production: From cellular biology to process improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Varrone, C. & Liberatore, R. & Crescenzi, T. & Izzo, G. & Wang, A., 2013. "The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen," Applied Energy, Elsevier, vol. 105(C), pages 349-357.
    16. Taylor-de-Lima, Reynaldo L.N. & Gerbasi da Silva, Arthur José & Legey, Luiz F.L. & Szklo, Alexandre, 2018. "Evaluation of economic feasibility under uncertainty of a thermochemical route for ethanol production in Brazil," Energy, Elsevier, vol. 150(C), pages 363-376.
    17. Adekunle, Ademola & Orsat, Valerie & Raghavan, Vijaya, 2016. "Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 518-530.
    18. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    19. Zhu, Shengdong & Luo, Fang & Huang, Wenjing & Huang, Wangxiang & Wu, Yuanxin, 2017. "Comparison of three fermentation strategies for alleviating the negative effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on lignocellulosic ethanol production," Applied Energy, Elsevier, vol. 197(C), pages 124-131.
    20. Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.

    More about this item

    Keywords

    Second generation ethanol · Syngas fermentation · Technoeconomic analysis · Sustainability analysis · Process simulation · Multiobjective optimisation;

    JEL classification:

    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:87640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.