A multi-timescale cold storage system within energy flexible buildings for power balance management of smart grids
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.07.079
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Junker, Rune Grønborg & Azar, Armin Ghasem & Lopes, Rui Amaral & Lindberg, Karen Byskov & Reynders, Glenn & Relan, Rishi & Madsen, Henrik, 2018. "Characterizing the energy flexibility of buildings and districts," Applied Energy, Elsevier, vol. 225(C), pages 175-182.
- Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
- Patteeuw, Dieter & Reynders, Glenn & Bruninx, Kenneth & Protopapadaki, Christina & Delarue, Erik & D’haeseleer, William & Saelens, Dirk & Helsen, Lieve, 2015. "CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects," Applied Energy, Elsevier, vol. 156(C), pages 490-501.
- Le Dréau, J. & Heiselberg, P., 2016. "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, Elsevier, vol. 111(C), pages 991-1002.
- Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
- Yan, Chengchu & Shi, Wenxing & Li, Xianting & Zhao, Yang, 2016. "Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage," Applied Energy, Elsevier, vol. 171(C), pages 1-11.
- Thakur, Jagruti & Chakraborty, Basab, 2016. "Demand side management in developing nations: A mitigating tool for energy imbalance and peak load management," Energy, Elsevier, vol. 114(C), pages 895-912.
- Yan, Chengchu & Shi, Wenxing & Li, Xianting & Wang, Shengwei, 2016. "A seasonal cold storage system based on separate type heat pipe for sustainable building cooling," Renewable Energy, Elsevier, vol. 85(C), pages 880-889.
- Singh, Randeep & Mochizuki, Masataka & Mashiko, Koichi & Nguyen, Thang, 2011. "Heat pipe based cold energy storage systems for datacenter energy conservation," Energy, Elsevier, vol. 36(5), pages 2802-2811.
- Persson, Johannes & Westermark, Mats, 2013. "Low-energy buildings and seasonal thermal energy storages from a behavioral economics perspective," Applied Energy, Elsevier, vol. 112(C), pages 975-980.
- Jiang, Yuheng Helen & Levman, Ryan & Golab, Lukasz & Nathwani, Jatin, 2016. "Analyzing the impact of the 5CP Ontario peak reduction program on large consumers," Energy Policy, Elsevier, vol. 93(C), pages 96-100.
- Walawalkar, Rahul & Fernands, Stephen & Thakur, Netra & Chevva, Konda Reddy, 2010. "Evolution and current status of demand response (DR) in electricity markets: Insights from PJM and NYISO," Energy, Elsevier, vol. 35(4), pages 1553-1560.
- Wang, Peng & Zareipour, Hamidreza & Rosehart, William D., 2011. "Characteristics of the prices of operating reserves and regulation services in competitive electricity markets," Energy Policy, Elsevier, vol. 39(6), pages 3210-3221, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fatima Zahra Zahraoui & Mehdi Et-taoussi & Houssam Eddine Chakir & Hamid Ouadi & Brahim Elbhiri, 2023. "Bellman–Genetic Hybrid Algorithm Optimization in Rural Area Microgrids," Energies, MDPI, vol. 16(19), pages 1-26, September.
- Zhou, Yuekuan, 2022. "A regression learner-based approach for battery cycling ageing prediction―advances in energy management strategy and techno-economic analysis," Energy, Elsevier, vol. 256(C).
- Liang, Yan & Yang, Haibin & Wang, Huilong & Bao, Xiaohua & Cui, Hongzhi, 2024. "Enhancing energy efficiency of air conditioning system through optimization of PCM-based cold energy storage tank: A data center case study," Energy, Elsevier, vol. 286(C).
- Lamnatou, Chr. & Chemisana, D. & Cristofari, C., 2022. "Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment," Renewable Energy, Elsevier, vol. 185(C), pages 1376-1391.
- Wu, Qunli & Ma, Zhe & Meng, Fanxing, 2022. "Long-term impacts of carbon allowance allocation in China: An IC-DCGE model optimized by the hypothesis of imperfectly competitive market," Energy, Elsevier, vol. 241(C).
- Li, Chuanchang & Peng, Meicheng & Xie, Baoshan & Li, Yaxi & Li, Mu, 2024. "Novel phase change cold energy storage materials for refrigerated transportation of fruits," Renewable Energy, Elsevier, vol. 220(C).
- Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Zhang, Wanlin & Yang, Mingguang & Shi, Junzhang, 2023. "Thermal performance analysis of ice thermal storage device based on micro heat pipe arrays: Role of bubble-driven flow," Renewable Energy, Elsevier, vol. 217(C).
- Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
- Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Zhang, Wanlin & Yang, Mingguang & Shi, Junzhang & Bai, Ze, 2023. "Dynamic modelling and performance prediction of a novel direct-expansion ice thermal storage system based multichannel flat tube evaporator plus micro heat pipe arrays storage module," Renewable Energy, Elsevier, vol. 217(C).
- Petrucci, Andrea & Ayevide, Follivi Kloutse & Buonomano, Annamaria & Athienitis, Andreas, 2023. "Development of energy aggregators for virtual communities: The energy efficiency-flexibility nexus for demand response," Renewable Energy, Elsevier, vol. 215(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- John Clauß & Sebastian Stinner & Christian Solli & Karen Byskov Lindberg & Henrik Madsen & Laurent Georges, 2019. "Evaluation Method for the Hourly Average CO 2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating," Energies, MDPI, vol. 12(7), pages 1-25, April.
- Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
- Monika Hall & Achim Geissler, 2020. "Load Control by Demand Side Management to Support Grid Stability in Building Clusters," Energies, MDPI, vol. 13(19), pages 1-15, October.
- Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
- Li, Xingping & Li, Ji & Zhou, Guohui & Lv, Lucang, 2020. "Quantitative analysis of passive seasonal cold storage with a two-phase closed thermosyphon," Applied Energy, Elsevier, vol. 260(C).
- Monika Hall & Achim Geissler, 2021. "Comparison of Flexibility Factors and Introduction of A Flexibility Classification Using Advanced Heat Pump Control," Energies, MDPI, vol. 14(24), pages 1-19, December.
- Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
- Liu, Mingzhe & Heiselberg, Per, 2019. "Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics," Applied Energy, Elsevier, vol. 233, pages 764-775.
- Arteconi, Alessia & Mugnini, Alice & Polonara, Fabio, 2019. "Energy flexible buildings: A methodology for rating the flexibility performance of buildings with electric heating and cooling systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Yan, Chengchu & Shi, Wenxing & Li, Xianting & Zhao, Yang, 2016. "Optimal design and application of a compound cold storage system combining seasonal ice storage and chilled water storage," Applied Energy, Elsevier, vol. 171(C), pages 1-11.
- Zhou, Yuekuan & Zheng, Siqian, 2020. "Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities," Applied Energy, Elsevier, vol. 262(C).
- Dmytro Romanchenko & Emil Nyholm & Mikael Odenberger & Filip Johnsson, 2019. "Flexibility Potential of Space Heating Demand Response in Buildings for District Heating Systems," Energies, MDPI, vol. 12(15), pages 1-23, July.
- Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
- Amadeh, Ali & Lee, Zachary E. & Zhang, K. Max, 2022. "Quantifying demand flexibility of building energy systems under uncertainty," Energy, Elsevier, vol. 246(C).
- Jennifer Date & José A. Candanedo & Andreas K. Athienitis, 2021. "A Methodology for the Enhancement of the Energy Flexibility and Contingency Response of a Building through Predictive Control of Passive and Active Storage," Energies, MDPI, vol. 14(5), pages 1-28, March.
- Ilaria Vigna & Jessica Balest & Wilmer Pasut & Roberta Pernetti, 2020. "Office Occupants’ Perspective Dealing with Energy Flexibility: A Large-Scale Survey in the Province of Bolzano," Energies, MDPI, vol. 13(17), pages 1-20, August.
- Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
- Pei Cai & Youxue Jiang & He Wang & Liangyu Wu & Peng Cao & Yulong Zhang & Feng Yao, 2020. "Numerical Simulation on the Influence of the Longitudinal Fins on the Enhancement of a Shell-and-Tube Ice Storage Device," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
- Yin, Linfei & Qiu, Yao, 2022. "Long-term price guidance mechanism of flexible energy service providers based on stochastic differential methods," Energy, Elsevier, vol. 238(PB).
- Awan, Muhammad Bilal & Sun, Yongjun & Lin, Wenye & Ma, Zhenjun, 2023. "A framework to formulate and aggregate performance indicators to quantify building energy flexibility," Applied Energy, Elsevier, vol. 349(C).
More about this item
Keywords
Energy flexible building; Demand response; Seasonal cold storage; Multi-time scale; Smart grid; Power balance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:626-634. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.