IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i2p184-d89524.html
   My bibliography  Save this article

Investigating How an Artificial Neural Network Model Can Be Used to Detect Added Mass on a Non-Rotating Beam Using Its Natural Frequencies: A Possible Application for Wind Turbine Blade Ice Detection

Author

Listed:
  • Sudhakar Gantasala

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden)

  • Jean-Claude Luneno

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden)

  • Jan-Olov Aidanpää

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden)

Abstract

Structures vibrate with their natural frequencies when disturbed from their equilibrium position. These frequencies reduce when an additional mass accumulates on their structures, like ice accumulation on wind turbines installed in cold climate sites. The added mass has two features: the location and quantity of mass. Natural frequencies of the structure reduce differently depending on these two features of the added mass. In this work, a technique based on an artificial neural network (ANN) model is proposed to identify added mass by training the neural network with a dataset of natural frequencies of the structure calculated using different quantities of the added mass at different locations on the structure. The proposed method is demonstrated on a non-rotating beam model fixed at one end. The length of the beam is divided into three zones in which different added masses are considered, and its natural frequencies are calculated using a finite element model of the beam. ANN is trained with this dataset of natural frequencies of the beam as an input and corresponding added masses used in the calculations as an output. ANN approximates the non-linear relationship between these inputs and outputs. An experimental setup of the cantilever beam is fabricated, and experimental modal analysis is carried out considering a few added masses on the beam. The frequencies estimated in the experiments are given as an input to the trained ANN model, and the identified masses are compared against the actual masses used in the experiments. These masses are identified with an error that varies with the location and the quantity of added mass. The reason for these errors can be attributed to the unaccounted stiffness variation in the beam model due to the added mass while generating the dataset for training the neural network. Therefore, the added masses are roughly estimated. At the end of the paper, an application of the current technique for detecting ice mass on a wind turbine blade is studied. A neural network model is designed and trained with a dataset of natural frequencies calculated using the finite element model of the blade considering different ice masses. The trained network model is tested to identify ice masses in four test cases that considers random mass distributions along the blade. The neural network model is able to roughly estimate ice masses, and the error reduces with increasing ice mass on the blade.

Suggested Citation

  • Sudhakar Gantasala & Jean-Claude Luneno & Jan-Olov Aidanpää, 2017. "Investigating How an Artificial Neural Network Model Can Be Used to Detect Added Mass on a Non-Rotating Beam Using Its Natural Frequencies: A Possible Application for Wind Turbine Blade Ice Detection," Energies, MDPI, vol. 10(2), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:184-:d:89524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/2/184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/2/184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    2. Habibi, Hossein & Cheng, Liang & Zheng, Haitao & Kappatos, Vassilios & Selcuk, Cem & Gan, Tat-Hean, 2015. "A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations," Renewable Energy, Elsevier, vol. 83(C), pages 859-870.
    3. Sudhakar Gantasala & Jean-Claude Luneno & Jan-Olov Aidanpää, 2016. "Influence of Icing on the Modal Behavior of Wind Turbine Blades," Energies, MDPI, vol. 9(11), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.
    2. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    3. Xianming Dou & Yongguo Yang & Jinhui Luo, 2018. "Estimating Forest Carbon Fluxes Using Machine Learning Techniques Based on Eddy Covariance Measurements," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
    4. Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    5. Madi, Ezieddin & Pope, Kevin & Huang, Weimin & Iqbal, Tariq, 2019. "A review of integrating ice detection and mitigation for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 269-281.
    6. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    7. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Yang, Zhongshan & Wang, Jian, 2018. "A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Energy, Elsevier, vol. 160(C), pages 87-100.
    9. Chen, Bin & Yu, Songhao & Yu, Yang & Zhou, Yilin, 2020. "Acoustical damage detection of wind turbine blade using the improved incremental support vector data description," Renewable Energy, Elsevier, vol. 156(C), pages 548-557.
    10. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    11. Alfredo Arcos Jiménez & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2017. "Machine Learning for Wind Turbine Blades Maintenance Management," Energies, MDPI, vol. 11(1), pages 1-16, December.
    12. Yan Li & He Shen & Wenfeng Guo, 2021. "Simulation and Experimental Study on the Ultrasonic Micro-Vibration De-Icing Method for Wind Turbine Blades," Energies, MDPI, vol. 14(24), pages 1-15, December.
    13. Miguel Á. Rodríguez-López & Emilio Cerdá & Pablo del Rio, 2020. "Modeling Wind-Turbine Power Curves: Effects of Environmental Temperature on Wind Energy Generation," Energies, MDPI, vol. 13(18), pages 1-21, September.
    14. Lin, Zhongwei & Chen, Zhenyu & Liu, Jizhen & Wu, Qiuwei, 2019. "Coordinated mechanical loads and power optimization of wind energy conversion systems with variable-weight model predictive control strategy," Applied Energy, Elsevier, vol. 236(C), pages 307-317.
    15. Dong, Xinghui & Gao, Di & Li, Jia & Jincao, Zhang & Zheng, Kai, 2020. "Blades icing identification model of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 162(C), pages 575-586.
    16. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    17. Paulo Rotela Junior & Eugenio Fischetti & Victor G. Araújo & Rogério S. Peruchi & Giancarlo Aquila & Luiz Célio S. Rocha & Liviam S. Lacerda, 2019. "Wind Power Economic Feasibility under Uncertainty and the Application of ANN in Sensitivity Analysis," Energies, MDPI, vol. 12(12), pages 1-10, June.
    18. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    19. Manzoor Ellahi & Ghulam Abbas & Irfan Khan & Paul Mario Koola & Mashood Nasir & Ali Raza & Umar Farooq, 2019. "Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems: A Review," Energies, MDPI, vol. 12(22), pages 1-30, November.
    20. Fathabadi, Hassan, 2016. "Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems," Applied Energy, Elsevier, vol. 183(C), pages 1498-1510.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:184-:d:89524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.