IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp1406-1413.html
   My bibliography  Save this article

Solar resource assessment of modern parking machines in an urban environment

Author

Listed:
  • Rehman, Naveed ur
  • Katebi, Milad
  • Shaikh, Faraz
  • Al Karim, Miftah

Abstract

This study presents a methodology for assessing the potential solar resource available at solar-powered parking machines installed in a typical city center. It is based on capturing fisheye images through an appropriate camera/lens. These images are then processed to classify the sky and non-sky pixels using a semi-automated sky detection method, also developed in this study. The processed images are then used to calculate the diffuse and beam solar potential of the site by estimating the visible fraction of the sky and the hours of the year during which the sun can be seen from the site, respectively. For the case study, 15 existing parking machines were analyzed in the central business district of Auckland (New Zealand). It was found that most of these machines were able to capture less than 50% of the available solar potential. Only two machines crossed the yearly irradiation threshold that represents the criterion for solar panel installation. If modern high-power solar-powered machines are used, selecting suitable locations for installation is crucial.

Suggested Citation

  • Rehman, Naveed ur & Katebi, Milad & Shaikh, Faraz & Al Karim, Miftah, 2020. "Solar resource assessment of modern parking machines in an urban environment," Renewable Energy, Elsevier, vol. 149(C), pages 1406-1413.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1406-1413
    DOI: 10.1016/j.renene.2019.10.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119316283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bosch, J.L. & Batlles, F.J. & Zarzalejo, L.F. & López, G., 2010. "Solar resources estimation combining digital terrain models and satellite images techniques," Renewable Energy, Elsevier, vol. 35(12), pages 2853-2861.
    2. Hofierka, Jaroslav & Kaňuk, Ján, 2009. "Assessment of photovoltaic potential in urban areas using open-source solar radiation tools," Renewable Energy, Elsevier, vol. 34(10), pages 2206-2214.
    3. Suomalainen, Kiti & Wang, Vincent & Sharp, Basil, 2017. "Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level," Renewable Energy, Elsevier, vol. 111(C), pages 463-475.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarmiento, Nilsa & Belmonte, Silvina & Dellicompagni, Pablo & Franco, Judith & Escalante, Karina & Sarmiento, Joaquín, 2019. "A solar irradiation GIS as decision support tool for the Province of Salta, Argentina," Renewable Energy, Elsevier, vol. 132(C), pages 68-80.
    2. Luis Ramirez Camargo & Judith Franco & Nilsa María Sarmiento Babieri & Silvina Belmonte & Karina Escalante & Raphaela Pagany & Wolfgang Dorner, 2016. "Technical, Economical and Social Assessment of Photovoltaics in the Frame of the Net-Metering Law for the Province of Salta, Argentina," Energies, MDPI, vol. 9(3), pages 1-21, February.
    3. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    4. Oh, Myeongchan & Park, Hyeong-Dong, 2018. "A new algorithm using a pyramid dataset for calculating shadowing in solar potential mapping," Renewable Energy, Elsevier, vol. 126(C), pages 465-474.
    5. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    6. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    7. Ramirez Camargo, Luis & Gruber, Katharina & Nitsch, Felix, 2019. "Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems," Renewable Energy, Elsevier, vol. 133(C), pages 1468-1478.
    8. Panagiotis G. Kosmopoulos & Marios T. Mechilis & Panagiota Kaoura, 2022. "Solar Energy Production Planning in Antikythera: Adequacy Scenarios and the Effect of the Atmospheric Parameters," Energies, MDPI, vol. 15(24), pages 1-19, December.
    9. Tomáš Hubinský & Roman Hajtmanek & Andrea Šeligová & Ján Legény & Robert Špaček, 2023. "Potentials and Limits of Photovoltaic Systems Integration in Historic Urban Structures: The Case Study of Monument Reserve in Bratislava, Slovakia," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    10. Hernández-Escobedo, Q. & Fernández-García, A. & Manzano-Agugliaro, F., 2017. "Solar resource assessment for rural electrification and industrial development in the Yucatan Peninsula (Mexico)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1550-1561.
    11. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    12. Aleksandra Besser & Jan K. Kazak & Małgorzata Świąder & Szymon Szewrański, 2019. "A Customized Decision Support System for Renewable Energy Application by Housing Association," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    13. Bocca, Alberto & Chiavazzo, Eliodoro & Macii, Alberto & Asinari, Pietro, 2015. "Solar energy potential assessment: An overview and a fast modeling approach with application to Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 291-296.
    14. Shahryar Jafarinejad & Rebecca R. Hernandez & Sajjad Bigham & Bryan S. Beckingham, 2023. "The Intertwined Renewable Energy–Water–Environment (REWE) Nexus Challenges and Opportunities: A Case Study of California," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    15. Alonso-Montesinos, J. & Martínez-Durbán, M. & del Sagrado, J. & del Águila, I.M. & Batlles, F.J., 2016. "The application of Bayesian network classifiers to cloud classification in satellite images," Renewable Energy, Elsevier, vol. 97(C), pages 155-161.
    16. Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
    17. Carlos Beltran-Velamazan & Marta Monzón-Chavarrías & Belinda López-Mesa, 2021. "A Method for the Automated Construction of 3D Models of Cities and Neighborhoods from Official Cadaster Data for Solar Analysis," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    18. Vardimon, Ran, 2011. "Assessment of the potential for distributed photovoltaic electricity production in Israel," Renewable Energy, Elsevier, vol. 36(2), pages 591-594.
    19. Abbes, Dhaker & Martinez, André & Champenois, Gérard, 2014. "Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 46-62.
    20. Bosch, J.L. & Batlles, F.J. & Zarzalejo, L.F. & López, G., 2010. "Solar resources estimation combining digital terrain models and satellite images techniques," Renewable Energy, Elsevier, vol. 35(12), pages 2853-2861.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1406-1413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.