IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2220-d537276.html
   My bibliography  Save this article

Catalytic Decomposition of 2% Methanol in Methane over Metallic Catalyst by Fixed-Bed Catalytic Reactor

Author

Listed:
  • Ali Awad

    (Department of Chemical Engineering, University of Faisalabad, Faisalabad 38000, Pakistan
    Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia)

  • Israr Ahmed

    (School of Chemical and Material Engineering, National University of Science and Technology, Islamabad 44000, Pakistan)

  • Danial Qadir

    (Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia)

  • Muhammad Saad Khan

    (Mechanical Engineering Department, Texas A&M University at Qatar, Al Rayyan 5270, Qatar)

  • Alamin Idris

    (Department of Engineering and Chemical Sciences, Karlstad University, 651 88 Karlstad, Sweden)

Abstract

The structure and performance of promoted Ni/Al 2 O 3 with Cu via thermocatalytic decomposition (TCD) of CH 4 mixture (2% CH 3 OH) were studied. Mesoporous Cat-1 and Cat-2 were synthesized by the impregnation method. The corresponding peaks of nickel oxide and copper oxide in the XRD showed the presence of nickel and copper oxides as a mixed alloy in the calcined catalyst. Temperature program reduction (TPR) showed that Cu enhanced the reducibility of the catalyst as the peak of nickel oxide shifted toward a lower temperature due to the interaction strength of the metal particles and support. The impregnation of 10% Cu on Cat-1 drastically improved the catalytic performance and exhibited 68% CH 4 conversion, and endured its activity for 6 h compared with Cat-1, which deactivated after 4 h. The investigation of the spent carbon showed that various forms of carbon were obtained as a by-product of TCD, including graphene fiber (GF), carbon nanofiber (CNF), and multi-wall carbon nanofibers (MWCNFs) on the active sites of Cat-2 and Cat-1, following various kinds of growth mechanisms. The presence of the D and G bands in the Raman spectroscopy confirmed the mixture of amorphous and crystalline morphology of the deposited carbon.

Suggested Citation

  • Ali Awad & Israr Ahmed & Danial Qadir & Muhammad Saad Khan & Alamin Idris, 2021. "Catalytic Decomposition of 2% Methanol in Methane over Metallic Catalyst by Fixed-Bed Catalytic Reactor," Energies, MDPI, vol. 14(8), pages 1-12, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2220-:d:537276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Awadallah, Ahmed E. & Aboul-Enein, Ateyya A. & Aboul-Gheit, Ahmed K., 2013. "Various nickel doping in commercial Ni–Mo/Al2O3 as catalysts for natural gas decomposition to COx-free hydrogen production," Renewable Energy, Elsevier, vol. 57(C), pages 671-678.
    2. Ashik, U.P.M. & Wan Daud, W.M.A. & Hayashi, Jun-ichiro, 2017. "A review on methane transformation to hydrogen and nanocarbon: Relevance of catalyst characteristics and experimental parameters on yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 743-767.
    3. Chan, Fan Liang & Tanksale, Akshat, 2014. "Review of recent developments in Ni-based catalysts for biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 428-438.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Haneol Kim & Jongkyu Kim, 2021. "Numerical Study on Optics and Heat Transfer of Solar Reactor for Methane Thermal Decomposition," Energies, MDPI, vol. 14(20), pages 1-21, October.
    3. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    4. Ramesh, Arumugam & Tamizhdurai, Perumal & Shanthi, Kannan, 2019. "Catalytic hydrodeoxygenation of jojoba oil to the green-fuel application on Ni-MoS/Mesoporous zirconia-silica catalysts," Renewable Energy, Elsevier, vol. 138(C), pages 161-173.
    5. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    7. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Shahbaz, Muhammad & Yusup, Suzana & Inayat, Abrar & Patrick, David Onoja & Pratama, Angga, 2016. "Application of response surface methodology to investigate the effect of different variables on conversion of palm kernel shell in steam gasification using coal bottom ash," Applied Energy, Elsevier, vol. 184(C), pages 1306-1315.
    9. Rezk, Hegazy & Inayat, Abrar & Abdelkareem, Mohammad A. & Olabi, Abdul G. & Nassef, Ahmed M., 2022. "Optimal operating parameter determination based on fuzzy logic modeling and marine predators algorithm approaches to improve the methane production via biomass gasification," Energy, Elsevier, vol. 239(PB).
    10. Fang Huang & Weizun Li & Qidong Hou & Meiting Ju, 2019. "Enhanced CH 4 Production from Corn-Stalk Pyrolysis Using Ni-5CeO 2 /MCM-41 as a Catalyst," Energies, MDPI, vol. 12(5), pages 1-12, February.
    11. Hou, Yanmei & Feng, Zixing & He, Yuyu & Gao, Qi & Ni, Liangmeng & Su, Mengfu & Ren, Hao & Liu, Zhijia & Hu, Wanhe, 2022. "Co-pyrolysis characteristics and synergistic interaction of bamboo residues and disposable face mask," Renewable Energy, Elsevier, vol. 194(C), pages 415-425.
    12. Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
    13. Li, Jian & Tao, Junyu & Yan, Beibei & Jiao, Liguo & Chen, Guanyi & Hu, Jianli, 2021. "Review of microwave-based treatments of biomass gasification tar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Chen, Guanyi & Dong, Xiaoshan & Yan, Beibei & Li, Jian & Yoshikawa, Kunio & Jiao, Liguo, 2022. "Photothermal steam reforming: A novel method for tar elimination in biomass gasification," Applied Energy, Elsevier, vol. 305(C).
    15. Liu, Xuan & Burra, Kiran G. & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2020. "On deconvolution for understanding synergistic effects in co-pyrolysis of pinewood and polypropylene," Applied Energy, Elsevier, vol. 279(C).
    16. Shahbaz, Muhammad & yusup, Suzana & Inayat, Abrar & Patrick, David Onoja & Ammar, Muhammad, 2017. "The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 468-476.
    17. Al -Fatesh, Ahmed Sadeq & Kasim, Samsudeen Olajide & Ibrahim, Ahmed Aidid & Al-Awadi, Abdulrhman S. & Abasaeed, Ahmed Elhag & Fakeeha, Anis H. & Awadallah, Ahmed E., 2020. "Catalytic methane decomposition over ZrO2 supported iron catalysts: Effect of WO3 and La2O3 addition on catalytic activity and stability," Renewable Energy, Elsevier, vol. 155(C), pages 969-978.
    18. Li, Bin & Magoua Mbeugang, Christian Fabrice & Huang, Yong & Liu, Dongjing & Wang, Qian & Zhang, Shu, 2022. "A review of CaO based catalysts for tar removal during biomass gasification," Energy, Elsevier, vol. 244(PB).
    19. Mei, Zhenfei & Chen, Dezhen & Qian, Kezhen & Yin, Lijie & Hong, Liu, 2024. "Producing methane from dry municipal solid wastes: A complete roadmap and the influence of char catalyst," Energy, Elsevier, vol. 290(C).
    20. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2220-:d:537276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.