IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124006219.html
   My bibliography  Save this article

Design and techno-economic assessment of a standalone photovoltaic-diesel-battery hybrid energy system for electrification of rural areas: A step towards sustainable development

Author

Listed:
  • Adefarati, T.
  • Bansal, R.C.
  • Naidoo, R.
  • Onaolapo, K.A.
  • Bettayeb, M.
  • Olulope, P.K.
  • Sobowale, A.A.

Abstract

The recent persistent power interruption in Nigeria has significantly disrupted commercial activities, resulting in a magnificent economic loss, supply chain ripples and revenue loss. As a result, harnessing renewable energy sources to generate electricity has become a popular choice for satisfying ever-increasing load demand and reducing apprehensions on global warming and reliance on depleted fossil fuels. The goal of this research is to determine whether powering a remote community with a hybrid energy system (HES) is technologically, financially and environmentally viable. The optimum design of a standalone HES with the diesel generator (DG), photovoltaic (PV) and battery storage system (BSS) is provided in this study to satisfy the electrical power needs of a farm settlement in Kura, Nigeria by considering generation constraints and load demand. This research work presents a genetic algorithm (GA) to minimize wearing cost of the system (WCS), minimize the land needed for the installation of the DG and PV system, minimize the total annual cost of the system (TAC) and maximize the benefit to cost ratio and revenue from electricity consumption. The findings of the research showed that PV/BSS/DG system is a prospective solution to satisfy the load requirements with least TAC of 67374 $/yr, annual maintenance cost (AMC) of 2808.2 $/yr, annual fuel cost (AFC) of 32300 $/yr and annual emission cost (AEC) of 774.2023 $/yr. The outcomes of the study show that a considerable TAC, AMC, AFC and AEC savings of 26766 $/yr (28.43 %), 2808.2 $/yr (53.09 %), 32300 $/yr (25.4 %) and 774.2023 $/yr (60.69 %) are recorded when compared with using DG alone. The control approach applied in this study has reduced the operational capacity of the DG and prevented about 41157 kg/yr, 419.19 kg/yr and 22.52 kg/yr of CO2, NOx and SO2 emissions from being injected into the atmosphere. The simulation outcomes of the research demonstrate that the developed model can significantly reduce cost of electricity in rural communities with the application of HES. Hence, a 45.36 % cost of energy saving has been accomplished through the energy management system introduced in the proposed HES. The study's outcomes can be used as benchmarks to help many countries to enhance access to electricity, raise their living standards and stimulate economic growth. The application of the proposed HES in remote communities can result in greater economic and environmental benefits to a general population of rural dwellers. The findings of the research work are beneficial to designers, independent power providers, investors, researchers and electricity consumers that are looking for a feasible power solution.

Suggested Citation

  • Adefarati, T. & Bansal, R.C. & Naidoo, R. & Onaolapo, K.A. & Bettayeb, M. & Olulope, P.K. & Sobowale, A.A., 2024. "Design and techno-economic assessment of a standalone photovoltaic-diesel-battery hybrid energy system for electrification of rural areas: A step towards sustainable development," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006219
    DOI: 10.1016/j.renene.2024.120556
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    2. Hassan M. H. Farh & Abdullrahman A. Al-Shamma’a & Abdullah M. Al-Shaalan & Abdulaziz Alkuhayli & Abdullah M. Noman & Tarek Kandil, 2022. "Technical and Economic Evaluation for Off-Grid Hybrid Renewable Energy System Using Novel Bonobo Optimizer," Sustainability, MDPI, vol. 14(3), pages 1-18, January.
    3. Ahlborg, Helene & Hammar, Linus, 2014. "Drivers and barriers to rural electrification in Tanzania and Mozambique – Grid-extension, off-grid, and renewable energy technologies," Renewable Energy, Elsevier, vol. 61(C), pages 117-124.
    4. Hove, Tawanda, 2000. "A method for predicting long-term average performance of photovoltaic systems," Renewable Energy, Elsevier, vol. 21(2), pages 207-229.
    5. Adefarati, T. & Bansal, R.C. & Bettayeb, M. & Naidoo, R., 2021. "Optimal energy management of a PV-WTG-BSS-DG microgrid system," Energy, Elsevier, vol. 217(C).
    6. Adefarati, T. & Bansal, R.C. & Bettayeb, M. & Naidoo, R., 2022. "Technical, economic, and environmental assessment of the distribution power system with the application of renewable energy technologies," Renewable Energy, Elsevier, vol. 199(C), pages 278-297.
    7. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    8. Singh, Poonam & Pandit, Manjaree & Srivastava, Laxmi, 2023. "Multi-objective optimal sizing of hybrid micro-grid system using an integrated intelligent technique," Energy, Elsevier, vol. 269(C).
    9. Rodríguez-Gallegos, Carlos D. & Yang, Dazhi & Gandhi, Oktoviano & Bieri, Monika & Reindl, Thomas & Panda, S.K., 2018. "A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study," Energy, Elsevier, vol. 160(C), pages 410-429.
    10. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2019. "Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community," Energy, Elsevier, vol. 187(C).
    11. Adefarati, T. & Bansal, R.C., 2017. "Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources," Applied Energy, Elsevier, vol. 206(C), pages 911-933.
    12. Cai, Wei & Li, Xing & Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A. & Alhuyi Nazari, Mohammad & Bui, Dieu Tien, 2020. "Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology," Energy, Elsevier, vol. 201(C).
    13. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
    14. Nithya Saiprasad & Akhtar Kalam & Aladin Zayegh, 2019. "Triple Bottom Line Analysis and Optimum Sizing of Renewable Energy Using Improved Hybrid Optimization Employing the Genetic Algorithm: A Case Study from India," Energies, MDPI, vol. 12(3), pages 1-23, January.
    15. Ghaffari, Abolfazl & Askarzadeh, Alireza, 2020. "Design optimization of a hybrid system subject to reliability level and renewable energy penetration," Energy, Elsevier, vol. 193(C).
    16. Zakaria Belboul & Belgacem Toual & Abdellah Kouzou & Lakhdar Mokrani & Abderrahman Bensalem & Ralph Kennel & Mohamed Abdelrahem, 2022. "Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria," Energies, MDPI, vol. 15(10), pages 1-30, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando García-Muñoz & Miguel Alfaro & Guillermo Fuertes & Manuel Vargas, 2022. "DC Optimal Power Flow Model to Assess the Irradiance Effect on the Sizing and Profitability of the PV-Battery System," Energies, MDPI, vol. 15(12), pages 1-16, June.
    2. Yohannes Biru Aemro & Pedro Moura & Aníbal T. de Almeida, 2020. "Design and Modeling of a Standalone DC-Microgrid for Off-Grid Schools in Rural Areas of Developing Countries," Energies, MDPI, vol. 13(23), pages 1-24, December.
    3. Adefarati, T. & Bansal, R.C. & Bettayeb, M. & Naidoo, R., 2022. "Technical, economic, and environmental assessment of the distribution power system with the application of renewable energy technologies," Renewable Energy, Elsevier, vol. 199(C), pages 278-297.
    4. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    5. Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
    6. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    7. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    8. Hereher, Mohamed & El Kenawy, Ahmed M., 2020. "Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated climatic-socioeconomic approach," Renewable Energy, Elsevier, vol. 161(C), pages 662-675.
    9. Luo, Tengqi & Xuan, Ang & Wang, Yafei & Li, Guanglei & Fang, Juan & Liu, Zhengguang, 2023. "Energy efficiency evaluation and optimization of active distribution networks with building integrated photovoltaic systems," Renewable Energy, Elsevier, vol. 219(P1).
    10. Adefarati, T. & Bansal, R.C. & Bettayeb, M. & Naidoo, R., 2021. "Optimal energy management of a PV-WTG-BSS-DG microgrid system," Energy, Elsevier, vol. 217(C).
    11. Das, Barun K. & Tushar, Mohammad Shahed H.K. & Zaman, Forhad, 2021. "Techno-economic feasibility and size optimisation of an off-grid hybrid system for supplying electricity and thermal loads," Energy, Elsevier, vol. 215(PA).
    12. Schmid, Fabian & Winzer, Joscha & Pasemann, André & Behrendt, Frank, 2021. "An open-source modeling tool for multi-objective optimization of renewable nano/micro-off-grid power supply system: Influence of temporal resolution, simulation period, and location," Energy, Elsevier, vol. 219(C).
    13. Abdelkader, Abbassi & Rabeh, Abbassi & Mohamed Ali, Dami & Mohamed, Jemli, 2018. "Multi-objective genetic algorithm based sizing optimization of a stand-alone wind/PV power supply system with enhanced battery/supercapacitor hybrid energy storage," Energy, Elsevier, vol. 163(C), pages 351-363.
    14. Ana Rita Silva & Ana Estanqueiro, 2022. "From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants," Energies, MDPI, vol. 15(7), pages 1-19, April.
    15. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    16. Sun, Xu & Liu, Yanli & Deng, Liangchen, 2020. "Reliability assessment of cyber-physical distribution network based on the fault tree," Renewable Energy, Elsevier, vol. 155(C), pages 1411-1424.
    17. Jing Yang & Yen-Lin Chen & Por Lip Yee & Chin Soon Ku & Manoochehr Babanezhad, 2023. "An Improved Artificial Ecosystem-Based Optimization Algorithm for Optimal Design of a Hybrid Photovoltaic/Fuel Cell Energy System to Supply A Residential Complex Demand: A Case Study for Kuala Lumpur," Energies, MDPI, vol. 16(6), pages 1-21, March.
    18. Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A. & Nejlaoui, Mohamed, 2021. "Techno-economic evaluation of an off-grid health clinic considering the current and future energy challenges: A rural case study," Renewable Energy, Elsevier, vol. 169(C), pages 34-52.
    19. Aslani, Mehrdad & Faraji, Jamal & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "A novel clustering-based method for reliability assessment of cyber-physical microgrids considering cyber interdependencies and information transmission errors," Applied Energy, Elsevier, vol. 315(C).
    20. Zeng, Bo & Luo, Yangfan, 2022. "Potential of harnessing operational flexibility from public transport hubs to improve reliability and economic performance of urban multi-energy systems: A holistic assessment framework," Applied Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.