The effect of crude glycerol impurities on 1,3-propanediol biosynthesis by Klebsiella pneumoniae DSMZ 2026
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.02.108
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tangkathitipong, Pranee & Intanoo, Patcharee & Butpan, Janyawan & Chavadej, Sumaeth, 2017. "Separate production of hydrogen and methane from biodiesel wastewater with added glycerin by two-stage anaerobic sequencing batch reactors (ASBR)," Renewable Energy, Elsevier, vol. 113(C), pages 1077-1085.
- Lankoski, Jussi & Ollikainen, Markku, 2011. "Biofuel policies and the environment: Do climate benefits warrant increased production from biofuel feedstocks?," Ecological Economics, Elsevier, vol. 70(4), pages 676-687, February.
- Vivek, Narisetty & Christopher, Meera & Kumar, M. Kiran & Castro, Eulogio & Binod, Parameswaran & Pandey, Ashok, 2018. "Pentose rich acid pretreated liquor as co-substrate for 1,3-propanediol production," Renewable Energy, Elsevier, vol. 129(PB), pages 794-799.
- Rossi, Daniele Misturini & de Souza, Elisangela Aquino & Flôres, Simone Hickmann & Ayub, Marco Antônio Záchia, 2013. "Conversion of residual glycerol from biodiesel synthesis into 1,3-propanediol by a new strain of Klebsiella pneumoniae," Renewable Energy, Elsevier, vol. 55(C), pages 404-409.
- Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
- Rossi, Daniele Misturini & da Costa, Janaína Berne & de Souza, Elisangela Aquino & Peralba, Maria do Carmo Ruaro & Ayub, Marco Antônio Záchia, 2012. "Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol and ethanol by isolated bacteria from environmental consortia," Renewable Energy, Elsevier, vol. 39(1), pages 223-227.
- Rahman, Md. Shafiqur & Xu, Chunbao (Charles) & Ma, Kesen & Guo, Haipeng & Qin, Wensheng, 2017. "Utilization of by-product glycerol from bio-diesel plants as feedstock for 2,3-butanediol accumulation and biosynthesis genes response of Klebsiella variicola SW3," Renewable Energy, Elsevier, vol. 114(PB), pages 1272-1280.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sittijunda, Sureewan & Reungsang, Alissara, 2020. "Valorization of crude glycerol into hydrogen, 1,3-propanediol, and ethanol in an up-flow anaerobic sludge blanket (UASB) reactor under thermophilic conditions," Renewable Energy, Elsevier, vol. 161(C), pages 361-372.
- Da Seul Kong & Eun Joo Park & Sakuntala Mutyala & Minsoo Kim & Yunchul Cho & Sang Eun Oh & Changman Kim & Jung Rae Kim, 2021. "Bioconversion of Crude Glycerol into 1,3-Propanediol(1,3-PDO) with Bioelectrochemical System and Zero-Valent Iron Using Klebsiella pneumoniae L17," Energies, MDPI, vol. 14(20), pages 1-10, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Narisetty, Vivek & Narisetty, Sudheera & Jacob, Samuel & Kumar, Deepak & Leeke, Gary A. & Chandel, Anuj Kumar & Singh, Vijai & Srivastava, Vimal Chandra & Kumar, Vinod, 2022. "Biological production and recovery of 2,3-butanediol using arabinose from sugar beet pulp by Enterobacter ludwigii," Renewable Energy, Elsevier, vol. 191(C), pages 394-404.
- Barbara Langlois & Vincent Martinet, 2023. "Defining cost-effective ways to improve ecosystem services provision in agroecosystems," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(2), pages 123-165, June.
- Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
- Asmat Ullah Khan & Lizhen Huang, 2023. "Toward Zero Emission Construction: A Comparative Life Cycle Impact Assessment of Diesel, Hybrid, and Electric Excavators," Energies, MDPI, vol. 16(16), pages 1-18, August.
- Cheteni, Priviledge, 2017. "Sustainability development: Biofuels in agriculture," MPRA Paper 80969, University Library of Munich, Germany, revised 24 Jun 2017.
- Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
- Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
- Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
- Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Qiu, Cheng & Colson, Gregory & Wetzstein, Michael, 2014.
"An ethanol blend wall shift is prone to increase petroleum gasoline demand,"
Energy Economics, Elsevier, vol. 44(C), pages 160-165.
- Qiu, Cheng & Colson, Gregory & Zhang, Zibin & Wetzstein, Michael E., 2011. "An Ethanol Blend Wall Shift is Prone to Increase Petroleum Gasoline Demand," 2011 Annual Meeting, February 5-8, 2011, Corpus Christi, Texas 98795, Southern Agricultural Economics Association.
- de Almeida Silva, Maria Cristina & Monteggia, Luiz Olinto & Alves Barroso Júnior, José Carlos & Granada, Camille Eichelberger & Giongo, Adriana, 2020. "Evaluation of semi-continuous operation to hydrogen and volatile fatty acids production using raw glycerol as substrate," Renewable Energy, Elsevier, vol. 153(C), pages 701-710.
- Cyril Bourgeois & Nosra Ben-Fradj & Mélissa Clodic & Pierre-Alain Jayet, 2011. "How cost-effective is a mixed policy targeting the management of three pollutants from N-fertilizers," Working Papers 2011/03, INRA, Economie Publique.
- Anderson, Blake & M'Gonigle, Michael, 2012. "Does ecological economics have a future?," Ecological Economics, Elsevier, vol. 84(C), pages 37-48.
- Shu, Qing & Tang, Guoqiang & Lesmana, Herry & Zou, Laixi & Xiong, Daolin, 2018. "Preparation, characterization and application of a novel solid Brönsted acid catalyst SO42−/La3+/C for biodiesel production via esterification of oleic acid and methanol," Renewable Energy, Elsevier, vol. 119(C), pages 253-261.
- Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
- Seffati, Kambiz & Esmaeili, Hossein & Honarvar, Bizhan & Esfandiari, Nadia, 2020. "AC/CuFe2O4@CaO as a novel nanocatalyst to produce biodiesel from chicken fat," Renewable Energy, Elsevier, vol. 147(P1), pages 25-34.
- Hoekman, S. Kent & Broch, Amber, 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II – Biodiversity, land use change, GHG emissions, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3159-3177.
- Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
- Aghbashlo, Mortaza & Tabatabaei, Meisam & Rastegari, Hajar & Ghaziaskar, Hassan S. & Valijanian, Elena, 2018. "Exergy-based optimization of a continuous reactor applied to produce value-added chemicals from glycerol through esterification with acetic acid," Energy, Elsevier, vol. 150(C), pages 351-362.
- Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Aghbashlo, Mortaza & Nizami, Abdul-Sattar & Heidrich, Oliver, 2019. "Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 276-292.
More about this item
Keywords
1; 3-Propanediol; Crude glycerol; Waste cooking oil; Batch fermentation; Klebsiella pneumoniae;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:153:y:2020:i:c:p:1418-1427. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.