IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp361-372.html
   My bibliography  Save this article

Valorization of crude glycerol into hydrogen, 1,3-propanediol, and ethanol in an up-flow anaerobic sludge blanket (UASB) reactor under thermophilic conditions

Author

Listed:
  • Sittijunda, Sureewan
  • Reungsang, Alissara

Abstract

Simultaneous hydrogen, ethanol, and 1,3-propanediol (1,3-PD) production from pure and crude glycerol were performed under thermophilic conditions (55 ± 4 °C). The effect of the organic loading rate (25, 37.5, 50, 62.5, and 75 g/L-d) on the formation of hydrogen, ethanol, and 1,3-PD was investigated. Maximum hydrogen yields of 2.90 and 2.05 mol-H2/mol-glycerol were achieved with OLR of 62.5 g/L-d of pure and crude glycerol. 1,3-PD yields of 0.32, 0.36 mol/mol-glycerol and ethanol yields of 0.19, 0.22 mol/mol-glycerol were achieved with the optimum OLRs using pure and crude glycerol. Ethanol production at 50.77 and 51.09 mmol/L was achieved at OLRs of 37.5 and 75 g/L-d, respectively, using pure and crude glycerol as substrates while the hydrogen and 1,3-PD yields of 1.08 and 1.69 mol-H2/mol-glycerol and 0.32 and 0.36 mol/mol-glycerol were obtained from these optimal OLRs. COD balance under optimum OLR using pure and crude glycerol as the substrate indicates that 1,3-PD and hydrogen were the main products followed by ethanol. The energy conversion efficiency for hydrogen, 1,3-PD, and ethanol was 34.87, 39.54, 17.88%, respectively. Enterobacter sp., Klebsiella sp., and K. pneumoniae, were found as the simultaneous hydrogen, ethanol, and 1,3-PD producing bacteria presence in pure and crude glycerol fermentation.

Suggested Citation

  • Sittijunda, Sureewan & Reungsang, Alissara, 2020. "Valorization of crude glycerol into hydrogen, 1,3-propanediol, and ethanol in an up-flow anaerobic sludge blanket (UASB) reactor under thermophilic conditions," Renewable Energy, Elsevier, vol. 161(C), pages 361-372.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:361-372
    DOI: 10.1016/j.renene.2020.07.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva-Illanes, Fernando & Tapia-Venegas, Estela & Schiappacasse, M. Cristina & Trably, Eric & Ruiz-Filippi, Gonzalo, 2017. "Impact of hydraulic retention time (HRT) and pH on dark fermentative hydrogen production from glycerol," Energy, Elsevier, vol. 141(C), pages 358-367.
    2. Silva, V. & Ratti, R.P. & Sakamoto, I.K. & Andrade, M.V.F. & Varesche, M.B.A., 2018. "Biotechnological products in batch reactors obtained from cellulose, glucose and xylose using thermophilic anaerobic consortium," Renewable Energy, Elsevier, vol. 125(C), pages 537-545.
    3. Sharma, Kamlesh, 2019. "Carbohydrate-to-hydrogen production technologies: A mini-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 138-143.
    4. Bamati, Narges & Raoofi, Ali, 2020. "Development level and the impact of technological factor on renewable energy production," Renewable Energy, Elsevier, vol. 151(C), pages 946-955.
    5. Mahmud, M.A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2020. "Life-cycle impact assessment of renewable electricity generation systems in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1028-1045.
    6. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    7. Kyriakou, Maria & Patsalou, Maria & Xiaris, Nikolas & Tsevis, Athanasios & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2020. "Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery," Renewable Energy, Elsevier, vol. 155(C), pages 53-64.
    8. Hu, Bin-Bin & Wang, Ji-Lian & Wang, Yu-Tao & Zhu, Ming-Jun, 2019. "Specify the individual and synergistic effects of lignocellulose-derived inhibitors on biohydrogen production and inhibitory mechanism research," Renewable Energy, Elsevier, vol. 140(C), pages 397-406.
    9. Laura, Mitrea & Monica, Trif & Dan-Cristian, Vodnar, 2020. "The effect of crude glycerol impurities on 1,3-propanediol biosynthesis by Klebsiella pneumoniae DSMZ 2026," Renewable Energy, Elsevier, vol. 153(C), pages 1418-1427.
    10. Hashemi, Seyed Sajad & Mirmohamadsadeghi, Safoora & Karimi, Keikhosro, 2020. "Biorefinery development based on whole safflower plant," Renewable Energy, Elsevier, vol. 152(C), pages 399-408.
    11. Leoneti, Alexandre Bevilacqua & Aragão-Leoneti, Valquiria & de Oliveira, Sonia Valle Walter Borges, 2012. "Glycerol as a by-product of biodiesel production in Brazil: Alternatives for the use of unrefined glycerol," Renewable Energy, Elsevier, vol. 45(C), pages 138-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjeet Mehariya & Antonella Signorini & Antonella Marone & Silvia Rosa, 2023. "Simultaneous Hydrogen and Ethanol Production from Crude Glycerol by a Microbial Consortium Using Fed-Batch Fermentation," Energies, MDPI, vol. 16(11), pages 1-18, June.
    2. Singh, Vijendra & Arumugam, Selvamani & Tathod, Anup Prakash & Kuldeep, & Vempatapu, Bhanu Prasad & Viswanadham, Nagabhatla, 2023. "Sustainable production of aromatics-rich gasoline stock from bio-glycerol over hierarchically porous Zn-decorated HZSM-5 catalyst," Renewable Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eckert, Jony Javorski & Silva, Fabrício L. & da Silva, Samuel Filgueira & Bueno, André Valente & de Oliveira, Mona Lisa Moura & Silva, Ludmila C.A., 2022. "Optimal design and power management control of hybrid biofuel–electric powertrain," Applied Energy, Elsevier, vol. 325(C).
    2. Da Seul Kong & Eun Joo Park & Sakuntala Mutyala & Minsoo Kim & Yunchul Cho & Sang Eun Oh & Changman Kim & Jung Rae Kim, 2021. "Bioconversion of Crude Glycerol into 1,3-Propanediol(1,3-PDO) with Bioelectrochemical System and Zero-Valent Iron Using Klebsiella pneumoniae L17," Energies, MDPI, vol. 14(20), pages 1-10, October.
    3. Zagrodnik, Roman & Duber, Anna, 2024. "Continuous dark-photo fermentative H2 production from synthetic lignocellulose hydrolysate with different photoheterotrophic cultures: Sequential vs. co-culture processes," Energy, Elsevier, vol. 290(C).
    4. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    5. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2021. "Determinants of renewable energy consumption: Importance of democratic institutions," Renewable Energy, Elsevier, vol. 179(C), pages 75-83.
    6. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    7. Yang, Junqin & Zhao, Hui & Li, Chenchen & Li, Xiuwei, 2021. "A direct energy reuse strategy for absorption air-conditioning system based on electrode regeneration method," Renewable Energy, Elsevier, vol. 168(C), pages 353-364.
    8. Cong Khai Dinh & Quang Thanh Ngo & Trung Thanh Nguyen, 2021. "Medium- and High-Tech Export and Renewable Energy Consumption: Non-Linear Evidence from the ASEAN Countries," Energies, MDPI, vol. 14(15), pages 1-16, July.
    9. Vural, Gulfer, 2021. "Analyzing the impacts of economic growth, pollution, technological innovation and trade on renewable energy production in selected Latin American countries," Renewable Energy, Elsevier, vol. 171(C), pages 210-216.
    10. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Emissions reduction by using e-components in 48 V mild hybrid trucks under dual-mode dual-fuel combustion," Applied Energy, Elsevier, vol. 299(C).
    11. Rui Dong & Shengnan Wang & Muhammad Awais Baloch, 2024. "Do green finance and green innovation foster environmental sustainability in China? Evidence from a quantile autoregressive-distributed lag model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 25995-26017, October.
    12. Okoye, P.U. & Hameed, B.H., 2016. "Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 558-574.
    13. Li, Xiaoyan & Zhen, Xudong & Wang, Yang & Tian, Zhi, 2022. "Numerical comparative study on performance and emissions characteristics fueled with methanol, ethanol and methane in high compression spark ignition engine," Energy, Elsevier, vol. 254(PA).
    14. Franck M. Ramaharo & Michael Fitiavana Randriamifidy, 2023. "Determinants of renewable energy consumption in Madagascar: Evidence from feature selection algorithms," Working Papers hal-04262240, HAL.
    15. Singh, Neeraj Kumar & Kumari, Priyanka & Singh, Rajesh, 2021. "Intensified hydrogen yield using hydrogenase rich sulfate-reducing bacteria in bio-electrochemical system," Energy, Elsevier, vol. 219(C).
    16. Dogan, Eyup & Chishti, Muhammad Zubair & Karimi Alavijeh, Nooshin & Tzeremes, Panayiotis, 2022. "The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    17. Izabela Jonek-Kowalska, 2022. "Assessing the energy security of European countries in the resource and economic context," Oeconomia Copernicana, Institute of Economic Research, vol. 13(2), pages 301-334, June.
    18. Kong, Pei San & Aroua, Mohamed Kheireddine & Daud, Wan Mohd Ashri Wan, 2016. "Conversion of crude and pure glycerol into derivatives: A feasibility evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 533-555.
    19. Mendiburu, Andrés Z. & Carvalho, João A. & Coronado, Christian J.R., 2014. "Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models," Energy, Elsevier, vol. 66(C), pages 189-201.
    20. Silva, Wellington Costa & Castro, Maria Priscila Pessanha & Perez, Victor Haber & Machado, Francisco A. & Mota, Leonardo & Sthel, Marcelo Silva, 2016. "Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation," Energy, Elsevier, vol. 114(C), pages 1093-1099.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:361-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.