Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.11.095
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shen, Macheng & Hu, Zhiqiang & Liu, Geliang, 2016. "Dynamic response and viscous effect analysis of a TLP-type floating wind turbine using a coupled aero-hydro-mooring dynamic code," Renewable Energy, Elsevier, vol. 99(C), pages 800-812.
- Wan, Ling & Gao, Zhen & Moan, Torgeir & Lugni, Claudio, 2016. "Experimental and numerical comparisons of hydrodynamic responses for a combined wind and wave energy converter concept under operational conditions," Renewable Energy, Elsevier, vol. 93(C), pages 87-100.
- Myhr, Anders & Bjerkseter, Catho & Ågotnes, Anders & Nygaard, Tor A., 2014. "Levelised cost of energy for offshore floating wind turbines in a life cycle perspective," Renewable Energy, Elsevier, vol. 66(C), pages 714-728.
- Muliawan, Made Jaya & Karimirad, Madjid & Moan, Torgeir, 2013. "Dynamic response and power performance of a combined Spar-type floating wind turbine and coaxial floating wave energy converter," Renewable Energy, Elsevier, vol. 50(C), pages 47-57.
- Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Yanni & Yan, Shiqiang & Shi, Hongda & Ma, Qingwei & Li, Demin & Cao, Feifei, 2023. "Hydrodynamic analysis of a novel multi-buoy wind-wave energy system," Renewable Energy, Elsevier, vol. 219(P1).
- Payam Aboutalebi & Fares M’zoughi & Izaskun Garrido & Aitor J. Garrido, 2021. "Performance Analysis on the Use of Oscillating Water Column in Barge-Based Floating Offshore Wind Turbines," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
- Cao, Feifei & Yu, Mingqi & Han, Meng & Liu, Bing & Wei, Zhiwen & Jiang, Juan & Tian, Huiyuan & Shi, Hongda & Li, Yanni, 2023. "WECs microarray effect on the coupled dynamic response and power performance of a floating combined wind and wave energy system," Renewable Energy, Elsevier, vol. 219(P2).
- Neisi, Atefeh & Ghafari, Hamid Reza & Ghassemi, Hassan & Moan, Torgeir & He, Guanghua, 2023. "Power extraction and dynamic response of hybrid semi-submersible yaw-drive flap combination (SYFC)," Renewable Energy, Elsevier, vol. 218(C).
- Chen, Zheng & Sun, Jili & Yang, Jingqing & Sun, Yong & Chen, Qian & Zhao, Hongyang & Qian, Peng & Si, Yulin & Zhang, Dahai, 2024. "Experimental and numerical analysis of power take-off control effects on the dynamic performance of a floating wind-wave combined system," Renewable Energy, Elsevier, vol. 226(C).
- Yang, Yang & Shi, Zhaobin & Fu, Jianbin & Ma, Lu & Yu, Jie & Fang, Fang & Li, Chun & Chen, Shunhua & Yang, Wenxian, 2023. "Effects of tidal turbine number on the performance of a 10 MW-class semi-submersible integrated floating wind-current system," Energy, Elsevier, vol. 285(C).
- Rony, J.S. & Karmakar, D., 2024. "Hydrodynamic response analysis of a hybrid TLP and heaving-buoy wave energy converter with PTO damping," Renewable Energy, Elsevier, vol. 226(C).
- Edwards, Emma C. & Holcombe, Anna & Brown, Scott & Ransley, Edward & Hann, Martyn & Greaves, Deborah, 2024. "Trends in floating offshore wind platforms: A review of early-stage devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Wang, Tianyuan & Zhu, Kai & Cao, Feifei & Li, Demin & Gong, Haoxiang & Li, Yanni & Shi, Hongda, 2024. "A coupling framework between OpenFAST and WEC-Sim. Part I: Validation and dynamic response analysis of IEA-15-MW-UMaine FOWT," Renewable Energy, Elsevier, vol. 225(C).
- Zhou, Binzhen & Hu, Jianjian & Jin, Peng & Sun, Ke & Li, Ye & Ning, Dezhi, 2023. "Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system," Energy, Elsevier, vol. 265(C).
- Gaspar, J.F. & Kamarlouei, M. & Thiebaut, F. & Guedes Soares, C., 2021. "Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions," Renewable Energy, Elsevier, vol. 177(C), pages 871-883.
- Wang, Yize & Liu, Zhenqing & Wang, Hao, 2022. "Proposal and layout optimization of a wind-wave hybrid energy system using GPU-accelerated differential evolution algorithm," Energy, Elsevier, vol. 239(PA).
- Cao, Shugang & Cheng, Youliang & Duan, Jinlong & Fan, Xiaoxu, 2022. "Experimental investigation on the dynamic response of an innovative semi-submersible floating wind turbine with aquaculture cages," Renewable Energy, Elsevier, vol. 200(C), pages 1393-1415.
- Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
- da Silva, L.S.P. & Sergiienko, N.Y. & Cazzolato, B. & Ding, B., 2022. "Dynamics of hybrid offshore renewable energy platforms: Heaving point absorbers connected to a semi-submersible floating offshore wind turbine," Renewable Energy, Elsevier, vol. 199(C), pages 1424-1439.
- Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
- Zhou, Binzhen & Hu, Jianjian & Wang, Yu & Jin, Peng & Jing, Fengmei & Ning, Dezhi, 2023. "Coupled dynamic and power generation characteristics of a hybrid system consisting of a semi-submersible wind turbine and an array of heaving wave energy converters," Renewable Energy, Elsevier, vol. 214(C), pages 23-38.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
- Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2022. "Experimental study of wave energy converter arrays adapted to a semi-submersible wind platform," Renewable Energy, Elsevier, vol. 188(C), pages 145-163.
- Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
- Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
- Cheng, Zhengshun & Wen, Ting Rui & Ong, Muk Chen & Wang, Kai, 2019. "Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept," Energy, Elsevier, vol. 171(C), pages 190-204.
- Laura Castro-Santos & Almudena Filgueira-Vizoso, 2019. "A Software for Calculating the Economic Aspects of Floating Offshore Renewable Energies," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
- Tawil, Tony El & Charpentier, Jean Frédéric & Benbouzid, Mohamed, 2018. "Sizing and rough optimization of a hybrid renewable-based farm in a stand-alone marine context," Renewable Energy, Elsevier, vol. 115(C), pages 1134-1143.
- Laura Castro-Santos & Almudena Filgueira-Vizoso & Carlos Álvarez-Feal & Luis Carral, 2018. "Influence of Size on the Economic Feasibility of Floating Offshore Wind Farms," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
- Clark, Caitlyn E. & Miller, Annalise & DuPont, Bryony, 2019. "An analytical cost model for co-located floating wind-wave energy arrays," Renewable Energy, Elsevier, vol. 132(C), pages 885-897.
- Laura Castro-Santos & Ana Rute Bento & Carlos Guedes Soares, 2020. "The Economic Feasibility of Floating Offshore Wave Energy Farms in the North of Spain," Energies, MDPI, vol. 13(4), pages 1-19, February.
- Gaspar, J.F. & Kamarlouei, M. & Thiebaut, F. & Guedes Soares, C., 2021. "Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions," Renewable Energy, Elsevier, vol. 177(C), pages 871-883.
- Kluger, Jocelyn M. & Haji, Maha N. & Slocum, Alexander H., 2023. "The power balancing benefits of wave energy converters in offshore wind-wave farms with energy storage," Applied Energy, Elsevier, vol. 331(C).
- Li, Yanni & Yan, Shiqiang & Shi, Hongda & Ma, Qingwei & Li, Demin & Cao, Feifei, 2023. "Hydrodynamic analysis of a novel multi-buoy wind-wave energy system," Renewable Energy, Elsevier, vol. 219(P1).
- Gao, Qiang & Hayward, Jennifer A. & Sergiienko, Nataliia & Khan, Salman Saeed & Hemer, Mark & Ertugrul, Nesimi & Ding, Boyin, 2024. "Detailed mapping of technical capacities and economics potential of offshore wind energy: A case study in South-eastern Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Li, Liang & Yuan, Zhi-Ming & Gao, Yan & Zhang, Xinshu & Tezdogan, Tahsin, 2019. "Investigation on long-term extreme response of an integrated offshore renewable energy device with a modified environmental contour method," Renewable Energy, Elsevier, vol. 132(C), pages 33-42.
- Yazdi, Hossein & Ghafari, Hamid Reza & Ghassemi, Hassan & He, Guanghua & Karimirad, Madjid, 2023. "Wave power extraction by Multi-Salter's duck WECs arrayed on the floating offshore wind turbine platform," Energy, Elsevier, vol. 278(PA).
- Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
- Enrico Giglio & Ermando Petracca & Bruno Paduano & Claudio Moscoloni & Giuseppe Giorgi & Sergej Antonello Sirigu, 2023. "Estimating the Cost of Wave Energy Converters at an Early Design Stage: A Bottom-Up Approach," Sustainability, MDPI, vol. 15(8), pages 1-39, April.
- Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Judge, Frances & McAuliffe, Fiona Devoy & Sperstad, Iver Bakken & Chester, Rachel & Flannery, Brian & Lynch, Katie & Murphy, Jimmy, 2019. "A lifecycle financial analysis model for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 370-383.
More about this item
Keywords
Floating wind turbine; Tension leg platform; Wave energy conversion; Dynamic response; Coupled wind and wave tests;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:151:y:2020:i:c:p:966-974. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.