IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp33-42.html
   My bibliography  Save this article

Investigation on long-term extreme response of an integrated offshore renewable energy device with a modified environmental contour method

Author

Listed:
  • Li, Liang
  • Yuan, Zhi-Ming
  • Gao, Yan
  • Zhang, Xinshu
  • Tezdogan, Tahsin

Abstract

Considering the massive simulations required by the full long-term analysis, the environmental contour method is commonly used to predict the long-term extreme responses of an offshore renewable system during life time. Nevertheless, the standard environmental contour method is not applicable to the wind energy device due to the non-monotonic aerodynamic behaviour of the wind turbine. This study presents the development of a modified environmental counter method and its application to the extreme responses of a hybrid offshore renewable system. The modified method considers the variability of the responses by checking multiple contour surfaces so that the non-monotonic aerodynamic behaviour of the wind turbine is considered. The hybrid system integrates a floating wind turbine, a wave energy converter and two tidal turbines. Simulation results prove that the modified method has a better accuracy.

Suggested Citation

  • Li, Liang & Yuan, Zhi-Ming & Gao, Yan & Zhang, Xinshu & Tezdogan, Tahsin, 2019. "Investigation on long-term extreme response of an integrated offshore renewable energy device with a modified environmental contour method," Renewable Energy, Elsevier, vol. 132(C), pages 33-42.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:33-42
    DOI: 10.1016/j.renene.2018.07.138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118309352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Liang & Gao, Yan & Hu, Zhiqiang & Yuan, Zhiming & Day, Sandy & Li, Haoran, 2018. "Model test research of a semisubmersible floating wind turbine with an improved deficient thrust force correction approach," Renewable Energy, Elsevier, vol. 119(C), pages 95-105.
    2. Wan, Ling & Gao, Zhen & Moan, Torgeir & Lugni, Claudio, 2016. "Experimental and numerical comparisons of hydrodynamic responses for a combined wind and wave energy converter concept under operational conditions," Renewable Energy, Elsevier, vol. 93(C), pages 87-100.
    3. Muliawan, Made Jaya & Karimirad, Madjid & Moan, Torgeir, 2013. "Dynamic response and power performance of a combined Spar-type floating wind turbine and coaxial floating wave energy converter," Renewable Energy, Elsevier, vol. 50(C), pages 47-57.
    4. Li, Liang & Cheng, Zhengshun & Yuan, Zhiming & Gao, Yan, 2018. "Short-term extreme response and fatigue damage of an integrated offshore renewable energy system," Renewable Energy, Elsevier, vol. 126(C), pages 617-629.
    5. Li, Liang & Gao, Yan & Yuan, Zhiming & Day, Sandy & Hu, Zhiqiang, 2018. "Dynamic response and power production of a floating integrated wind, wave and tidal energy system," Renewable Energy, Elsevier, vol. 116(PA), pages 412-422.
    6. Li, Liang & Liu, Yuanchuan & Yuan, Zhiming & Gao, Yan, 2018. "Wind field effect on the power generation and aerodynamic performance of offshore floating wind turbines," Energy, Elsevier, vol. 157(C), pages 379-390.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Jiang & Chenyu Liang & Tao Tao & Yi Yang & Shi Liu & Jiang Deng & Mingsheng Chen, 2024. "Fully Coupled Analysis of a 10 MW Floating Wind Turbine Integrated with Multiple Wave Energy Converters for Joint Wind and Wave Utilization," Sustainability, MDPI, vol. 16(21), pages 1-31, October.
    2. Chen, Yisu & Wu, Di & Yu, Yuguo & Gao, Wei, 2021. "Do cyclone impacts really matter for the long-term performance of an offshore wind turbine?," Renewable Energy, Elsevier, vol. 178(C), pages 184-201.
    3. Aitor Saenz-Aguirre & Unai Fernandez-Gamiz & Ekaitz Zulueta & Alain Ulazia & Jon Martinez-Rico, 2019. "Optimal Wind Turbine Operation by Artificial Neural Network-Based Active Gurney Flap Flow Control," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    4. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    5. Yang, Yang & Fu, Jianbin & Shi, Zhaobin & Ma, Lu & Yu, Jie & Fang, Fang & Chen, Shunhua & Lin, Zaibin & Li, Chun, 2023. "Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects," Renewable Energy, Elsevier, vol. 216(C).
    6. Jieyan Chen & Chengxi Li, 2020. "Design Optimization and Coupled Dynamics Analysis of an Offshore Wind Turbine with a Single Swivel Connected Tether," Energies, MDPI, vol. 13(14), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Liang & Cheng, Zhengshun & Yuan, Zhiming & Gao, Yan, 2018. "Short-term extreme response and fatigue damage of an integrated offshore renewable energy system," Renewable Energy, Elsevier, vol. 126(C), pages 617-629.
    2. Li, Liang & Yuan, Zhiming & Gao, Yan, 2018. "Maximization of energy absorption for a wave energy converter using the deep machine learning," Energy, Elsevier, vol. 165(PA), pages 340-349.
    3. Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2022. "Experimental study of wave energy converter arrays adapted to a semi-submersible wind platform," Renewable Energy, Elsevier, vol. 188(C), pages 145-163.
    4. Li, Liang & Liu, Yuanchuan & Yuan, Zhiming & Gao, Yan, 2018. "Wind field effect on the power generation and aerodynamic performance of offshore floating wind turbines," Energy, Elsevier, vol. 157(C), pages 379-390.
    5. Cao, Feifei & Yu, Mingqi & Han, Meng & Liu, Bing & Wei, Zhiwen & Jiang, Juan & Tian, Huiyuan & Shi, Hongda & Li, Yanni, 2023. "WECs microarray effect on the coupled dynamic response and power performance of a floating combined wind and wave energy system," Renewable Energy, Elsevier, vol. 219(P2).
    6. Cheng, Zhengshun & Wen, Ting Rui & Ong, Muk Chen & Wang, Kai, 2019. "Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept," Energy, Elsevier, vol. 171(C), pages 190-204.
    7. Gaspar, J.F. & Kamarlouei, M. & Thiebaut, F. & Guedes Soares, C., 2021. "Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions," Renewable Energy, Elsevier, vol. 177(C), pages 871-883.
    8. Li, Yanni & Yan, Shiqiang & Shi, Hongda & Ma, Qingwei & Li, Demin & Cao, Feifei, 2023. "Hydrodynamic analysis of a novel multi-buoy wind-wave energy system," Renewable Energy, Elsevier, vol. 219(P1).
    9. Yazdi, Hossein & Ghafari, Hamid Reza & Ghassemi, Hassan & He, Guanghua & Karimirad, Madjid, 2023. "Wave power extraction by Multi-Salter's duck WECs arrayed on the floating offshore wind turbine platform," Energy, Elsevier, vol. 278(PA).
    10. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    11. Ren, Nianxin & Ma, Zhe & Shan, Baohua & Ning, Dezhi & Ou, Jinping, 2020. "Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions," Renewable Energy, Elsevier, vol. 151(C), pages 966-974.
    12. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    13. Yang, Yang & Fu, Jianbin & Shi, Zhaobin & Ma, Lu & Yu, Jie & Fang, Fang & Chen, Shunhua & Lin, Zaibin & Li, Chun, 2023. "Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects," Renewable Energy, Elsevier, vol. 216(C).
    14. Li, Ming & Luo, Haojie & Zhou, Shijie & Senthil Kumar, Gokula Manikandan & Guo, Xinman & Law, Tin Chung & Cao, Sunliang, 2022. "State-of-the-art review of the flexibility and feasibility of emerging offshore and coastal ocean energy technologies in East and Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    15. Li, Liang, 2022. "Full-coupled analysis of offshore floating wind turbine supported by very large floating structure with consideration of hydroelasticity," Renewable Energy, Elsevier, vol. 189(C), pages 790-799.
    16. da Silva, L.S.P. & Sergiienko, N.Y. & Cazzolato, B. & Ding, B., 2022. "Dynamics of hybrid offshore renewable energy platforms: Heaving point absorbers connected to a semi-submersible floating offshore wind turbine," Renewable Energy, Elsevier, vol. 199(C), pages 1424-1439.
    17. Zhou, Yang & Xiao, Qing & Liu, Yuanchuan & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng & Pan, Guang & Li, Sunwei, 2022. "Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation," Renewable Energy, Elsevier, vol. 182(C), pages 1060-1079.
    18. Fan, YaJun & Mu, AnLe & Ma, Tao, 2016. "Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator," Energy, Elsevier, vol. 112(C), pages 188-199.
    19. Li, Liang & Gao, Yan & Yuan, Zhiming & Day, Sandy & Hu, Zhiqiang, 2018. "Dynamic response and power production of a floating integrated wind, wave and tidal energy system," Renewable Energy, Elsevier, vol. 116(PA), pages 412-422.
    20. Vasileiou, Margarita & Loukogeorgaki, Eva & Vagiona, Dimitra G., 2017. "GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 745-757.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:33-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.