IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v133y2019icp53-65.html
   My bibliography  Save this article

Field testing of morphing flaps on a wind turbine blade using an outdoor rotating rig

Author

Listed:
  • Ai, Qing
  • Weaver, Paul M.
  • Barlas, Thanasis K.
  • Olsen, Anders S.
  • Madsen, Helge A.
  • Andersen, Tom L.

Abstract

In recent years, active flap devices on wind turbine blades have been shown to both reduce peak loads at the tower and extend blade fatigue life. Associated benefits include retrofitting existing tower infrastructure with longer and greater energy-producing blades whilst also extending service life of blades. In the current work, a novel wind turbine blade control method using morphing flaps has been successfully investigated and demonstrated using a scaled demonstrator mounted on an outdoor rotating test rig. Shape adaptive structures that remain conformal to the flow are increasingly referred to as morphing devices. As part of the INNWind.eu project, a novel morphing flap device was developed for a recently designed aerofoil. The proposed morphing flap comprises a light-weight carbon fibre laminate, 3D printed honeycomb core and a flexible silicone surface. A comprehensive test campaign using an outdoor rotating test rig under atmospheric conditions was carried out to assess the potential effectiveness. As shown by experimental data, the morphing flap provides good performance in terms of aerodynamic lift control of the blade and can provide dynamic load alleviation capability.

Suggested Citation

  • Ai, Qing & Weaver, Paul M. & Barlas, Thanasis K. & Olsen, Anders S. & Madsen, Helge A. & Andersen, Tom L., 2019. "Field testing of morphing flaps on a wind turbine blade using an outdoor rotating rig," Renewable Energy, Elsevier, vol. 133(C), pages 53-65.
  • Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:53-65
    DOI: 10.1016/j.renene.2018.09.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118311662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.09.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    2. Kamliya Jawahar, Hasan & Ai, Qing & Azarpeyvand, Mahdi, 2018. "Experimental and numerical investigation of aerodynamic performance for airfoils with morphed trailing edges," Renewable Energy, Elsevier, vol. 127(C), pages 355-367.
    3. Zhang, Mingming & Tan, Bin & Xu, Jianzhong, 2015. "Parameter study of sizing and placement of deformable trailing edge flap on blade fatigue load reduction," Renewable Energy, Elsevier, vol. 77(C), pages 217-226.
    4. Zhang, Mingming & Tan, Bin & Xu, Jianzhong, 2016. "Smart fatigue load control on the large-scale wind turbine blades using different sensing signals," Renewable Energy, Elsevier, vol. 87(P1), pages 111-119.
    5. Zhang, Mingming & Yu, Wei & Xu, Jianzhong, 2014. "Aerodynamic physics of smart load control for wind turbine due to extreme wind shear," Renewable Energy, Elsevier, vol. 70(C), pages 204-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuang, Chen & Yang, Gang & Zhu, Yawei & Hu, Dean, 2020. "Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section," Renewable Energy, Elsevier, vol. 148(C), pages 964-974.
    2. Li, Juan & Wang, Yinan & Zhao, Xiaowei & Qi, Pengyuan, 2021. "Model free adaptive control of large and flexible wind turbine rotors with controllable flaps," Renewable Energy, Elsevier, vol. 180(C), pages 68-82.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Chen & Yang, Gang & Zhu, Yawei & Hu, Dean, 2020. "Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section," Renewable Energy, Elsevier, vol. 148(C), pages 964-974.
    2. Zhang, Mingming & Yang, Honglei & Xu, Jianzhong, 2017. "Numerical investigation of azimuth dependent smart rotor control on a large-scale offshore wind turbine," Renewable Energy, Elsevier, vol. 105(C), pages 248-256.
    3. Zhang, Mingming & Li, Xin & Tong, Jingxin & Xu, Jianzhong, 2020. "Load control of floating wind turbine on a Tension-Leg-Platform subject to extreme wind condition," Renewable Energy, Elsevier, vol. 151(C), pages 993-1007.
    4. Zhang, Mingming & Li, Xin & Xu, Jianzhong, 2019. "Smart control of fatigue loads on a floating wind turbine with a tension-leg-platform," Renewable Energy, Elsevier, vol. 134(C), pages 745-756.
    5. Zhang, Mingming & Tan, Bin & Xu, Jianzhong, 2016. "Smart fatigue load control on the large-scale wind turbine blades using different sensing signals," Renewable Energy, Elsevier, vol. 87(P1), pages 111-119.
    6. Li, Qing'an & Xu, Jianzhong & Maeda, Takao & Kamada, Yasunari & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2019. "Laser Doppler Velocimetry (LDV) measurements of airfoil surface flow on a Horizontal Axis Wind Turbine in boundary layer," Energy, Elsevier, vol. 183(C), pages 341-357.
    7. Jijian Lian & Yaya Jia & Haijun Wang & Fang Liu, 2016. "Numerical Study of the Aerodynamic Loads on Offshore Wind Turbines under Typhoon with Full Wind Direction," Energies, MDPI, vol. 9(8), pages 1-21, August.
    8. Novaes Menezes, Eduardo José & Araújo, Alex Maurício & Rohatgi, Janardan Singh & González del Foyo, Pedro Manuel, 2018. "Active load control of large wind turbines using state-space methods and disturbance accommodating control," Energy, Elsevier, vol. 150(C), pages 310-319.
    9. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    10. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    11. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    12. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.
    13. Zhang, Wenguang & Bai, Xuejian & Wang, Yifeng & Han, Yue & Hu, Yong, 2018. "Optimization of sizing parameters and multi-objective control of trailing edge flaps on a smart rotor," Renewable Energy, Elsevier, vol. 129(PA), pages 75-91.
    14. Jiang, Jheng-Lun & Chang, Hong-Chan & Kuo, Cheng-Chien & Huang, Cheng-Kai, 2013. "Transient overvoltage phenomena on the control system of wind turbines due to lightning strike," Renewable Energy, Elsevier, vol. 57(C), pages 181-189.
    15. Mathijs Peeters & Gilberto Santo & Joris Degroote & Wim Van Paepegem, 2017. "The Concept of Segmented Wind Turbine Blades: A Review," Energies, MDPI, vol. 10(8), pages 1-20, July.
    16. Sahu, Bikash Kumar & Hiloidhari, Moonmoon & Baruah, D.C., 2013. "Global trend in wind power with special focus on the top five wind power producing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 348-359.
    17. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    18. Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
    19. Teklebrhan Negash & Erik Möllerström & Fredric Ottermo, 2020. "An Assessment of Wind Energy Potential for the Three Topographic Regions of Eritrea," Energies, MDPI, vol. 13(7), pages 1-12, April.
    20. Xue, Jie & Yip, Tsz Leung & Wu, Bing & Wu, Chaozhong & van Gelder, P.H.A.J.M., 2021. "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renewable Energy, Elsevier, vol. 172(C), pages 897-917.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:133:y:2019:i:c:p:53-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.