Smart control of fatigue loads on a floating wind turbine with a tension-leg-platform
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2018.11.079
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Mingming & Yang, Honglei & Xu, Jianzhong, 2017. "Numerical investigation of azimuth dependent smart rotor control on a large-scale offshore wind turbine," Renewable Energy, Elsevier, vol. 105(C), pages 248-256.
- Zhang, Mingming & Tan, Bin & Xu, Jianzhong, 2015. "Parameter study of sizing and placement of deformable trailing edge flap on blade fatigue load reduction," Renewable Energy, Elsevier, vol. 77(C), pages 217-226.
- Feng Yang & Qing-wang Song & Lei Wang & Shan Zuo & Sheng-shan Li, 2014. "Wind and Wave Disturbances Compensation to Floating Offshore Wind Turbine Using Improved Individual Pitch Control Based on Fuzzy Control Strategy," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-10, March.
- Wei Yu & Ming Ming Zhang & Jian Zhong Xu, 2012. "Effect of Smart Rotor Control Using a Deformable Trailing Edge Flap on Load Reduction under Normal and Extreme Turbulence," Energies, MDPI, vol. 5(9), pages 1-19, September.
- Zhang, Mingming & Tan, Bin & Xu, Jianzhong, 2016. "Smart fatigue load control on the large-scale wind turbine blades using different sensing signals," Renewable Energy, Elsevier, vol. 87(P1), pages 111-119.
- Zhang, Mingming & Yu, Wei & Xu, Jianzhong, 2014. "Aerodynamic physics of smart load control for wind turbine due to extreme wind shear," Renewable Energy, Elsevier, vol. 70(C), pages 204-210.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
- Lu, Liang & Wu, Haijun & Wu, Jianzhong, 2021. "A case study for the optimization of moment-matching in wind turbine blade fatigue tests with a resonant type exciting approach," Renewable Energy, Elsevier, vol. 174(C), pages 769-785.
- Wakui, Tetsuya & Nagamura, Atsushi & Yokoyama, Ryohei, 2021. "Stabilization of power output and platform motion of a floating offshore wind turbine-generator system using model predictive control based on previewed disturbances," Renewable Energy, Elsevier, vol. 173(C), pages 105-127.
- Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Zhuang, Chen & Yang, Gang & Zhu, Yawei & Hu, Dean, 2020. "Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section," Renewable Energy, Elsevier, vol. 148(C), pages 964-974.
- López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Mingming & Li, Xin & Tong, Jingxin & Xu, Jianzhong, 2020. "Load control of floating wind turbine on a Tension-Leg-Platform subject to extreme wind condition," Renewable Energy, Elsevier, vol. 151(C), pages 993-1007.
- Zhang, Mingming & Yang, Honglei & Xu, Jianzhong, 2017. "Numerical investigation of azimuth dependent smart rotor control on a large-scale offshore wind turbine," Renewable Energy, Elsevier, vol. 105(C), pages 248-256.
- Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Zhang, Mingming & Tan, Bin & Xu, Jianzhong, 2016. "Smart fatigue load control on the large-scale wind turbine blades using different sensing signals," Renewable Energy, Elsevier, vol. 87(P1), pages 111-119.
- Ai, Qing & Weaver, Paul M. & Barlas, Thanasis K. & Olsen, Anders S. & Madsen, Helge A. & Andersen, Tom L., 2019. "Field testing of morphing flaps on a wind turbine blade using an outdoor rotating rig," Renewable Energy, Elsevier, vol. 133(C), pages 53-65.
- Wang, Xuefei & Zeng, Xiangwu & Li, Xinyao & Li, Jiale, 2019. "Investigation on offshore wind turbine with an innovative hybrid monopile foundation: An experimental based study," Renewable Energy, Elsevier, vol. 132(C), pages 129-141.
- Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
- Novaes Menezes, Eduardo José & Araújo, Alex Maurício & Rohatgi, Janardan Singh & González del Foyo, Pedro Manuel, 2018. "Active load control of large wind turbines using state-space methods and disturbance accommodating control," Energy, Elsevier, vol. 150(C), pages 310-319.
- Zhang, Mingming & Tan, Bin & Xu, Jianzhong, 2015. "Parameter study of sizing and placement of deformable trailing edge flap on blade fatigue load reduction," Renewable Energy, Elsevier, vol. 77(C), pages 217-226.
- Zhuang, Chen & Yang, Gang & Zhu, Yawei & Hu, Dean, 2020. "Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section," Renewable Energy, Elsevier, vol. 148(C), pages 964-974.
- Li, Qingan & Cai, Chang & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Dong, Yehong & Zhang, Fanghong & Xu, Jianzhong, 2021. "Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method," Energy, Elsevier, vol. 225(C).
- Noyes, Carlos & Qin, Chao & Loth, Eric, 2018. "Pre-aligned downwind rotor for a 13.2 MW wind turbine," Renewable Energy, Elsevier, vol. 116(PA), pages 749-754.
- López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Li, Jiale & Wang, Xuefei & Guo, Yuan & Yu, Xiong Bill, 2020. "The loading behavior of innovative monopile foundations for offshore wind turbine based on centrifuge experiments," Renewable Energy, Elsevier, vol. 152(C), pages 1109-1120.
- Keshan He & Liangwen Qi & Liming Zheng & Yan Chen, 2018. "Combined Pitch and Trailing Edge Flap Control for Load Mitigation of Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-16, September.
- Li, Qing'an & Xu, Jianzhong & Maeda, Takao & Kamada, Yasunari & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2019. "Laser Doppler Velocimetry (LDV) measurements of airfoil surface flow on a Horizontal Axis Wind Turbine in boundary layer," Energy, Elsevier, vol. 183(C), pages 341-357.
- Jijian Lian & Yaya Jia & Haijun Wang & Fang Liu, 2016. "Numerical Study of the Aerodynamic Loads on Offshore Wind Turbines under Typhoon with Full Wind Direction," Energies, MDPI, vol. 9(8), pages 1-21, August.
- Zhang, Wenguang & Bai, Xuejian & Wang, Yifeng & Han, Yue & Hu, Yong, 2018. "Optimization of sizing parameters and multi-objective control of trailing edge flaps on a smart rotor," Renewable Energy, Elsevier, vol. 129(PA), pages 75-91.
- Flavie Didier & Yong-Chao Liu & Salah Laghrouche & Daniel Depernet, 2024. "A Comprehensive Review on Advanced Control Methods for Floating Offshore Wind Turbine Systems above the Rated Wind Speed," Energies, MDPI, vol. 17(10), pages 1-33, May.
- Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
More about this item
Keywords
Smart rotor; Floating wind turbine; Tension-leg-platform; Fatigue load; Fluid-structure interaction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:745-756. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.