IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p730-740.html
   My bibliography  Save this article

The energy gain reduction due to shadow inside a flat-plate solar collector

Author

Listed:
  • Farhadi, Rouhollah
  • Taki, Morteza

Abstract

Shadow on the absorber plate of a flat-plate solar collector or a solar cooker box can reduce absorbed energy. The main goal of this research is to investigate the effective factors on the shadow formation inside a solar collector. In addition, the energy gain reduction due to shadow was calculated. The length, width (0.5–2.5) and height (0.01–0.2 m) of a solar collector, tilt angle (0.01–80°) and latitude (0.01–65°) were considered as the effective variables on the shadow formation. The sum of shadow ratio and the percentage of energy gain reduction per year were chosen as the dependent variables, and the effect of each factor was discussed. Results showed that the effective variables (strong to weak) were height, width, tilt angle, latitude and length for the sum of shadow ratio per year, and height, tilt angle, width, latitude and length for the energy gain reduction per year. The minimum and maximum energy gain reduction per year due to shadow for a solar collector with length = width = 1 and height = 0.04 m were obtained 5.23 and 21.64%, respectively. If a solar collector has a rectangular plate, the larger width is more suitable than the larger length for the shadow reduction.

Suggested Citation

  • Farhadi, Rouhollah & Taki, Morteza, 2020. "The energy gain reduction due to shadow inside a flat-plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 730-740.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:730-740
    DOI: 10.1016/j.renene.2019.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akhtar, N. & Mullick, S.C., 2007. "Computation of glass-cover temperatures and top heat loss coefficient of flat-plate solar collectors with double glazing," Energy, Elsevier, vol. 32(7), pages 1067-1074.
    2. Oliveira, Amauri P. & Escobedo, João F. & Machado, Antonio J. & Soares, Jacyra, 2002. "Correlation models of diffuse solar-radiation applied to the city of São Paulo, Brazil," Applied Energy, Elsevier, vol. 71(1), pages 59-73, January.
    3. Soares, Jacyra & Oliveira, Amauri P. & Boznar, Marija Zlata & Mlakar, Primoz & Escobedo, João F. & Machado, Antonio J., 2004. "Modeling hourly diffuse solar-radiation in the city of São Paulo using a neural-network technique," Applied Energy, Elsevier, vol. 79(2), pages 201-214, October.
    4. Shariah, Adnan & Al-Akhras, M-Ali & Al-Omari, I.A., 2002. "Optimizing the tilt angle of solar collectors," Renewable Energy, Elsevier, vol. 26(4), pages 587-598.
    5. Hussein, H.M.S. & Ahmad, G.E. & Mohamad, M.A., 2000. "Optimization of operational and design parameters of plane reflector-tilted flat plate solar collector systems," Energy, Elsevier, vol. 25(6), pages 529-542.
    6. Jacovides, C.P. & Tymvios, F.S. & Assimakopoulos, V.D. & Kaltsounides, N.A., 2006. "Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation," Renewable Energy, Elsevier, vol. 31(15), pages 2492-2504.
    7. Mohamed Ali, B.S, 2000. "Design and testing of Sudanese solar box cooker," Renewable Energy, Elsevier, vol. 21(3), pages 573-581.
    8. Nahar, N.M. & Garg, H.P., 1980. "Free convection and shading due to gap spacing between an absorber plate and the cover glazing in solar energy flat-plate collectors," Applied Energy, Elsevier, vol. 7(1-3), pages 129-145, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vytautas Bocullo & Linas Martišauskas & Darius Pupeikis & Ramūnas Gatautis & Rytis Venčaitis & Rimantas Bakas, 2023. "UAV Photogrammetry Application for Determining the Influence of Shading on Solar Photovoltaic Array Energy Efficiency," Energies, MDPI, vol. 16(3), pages 1-19, January.
    2. Arias-Rosales, Andrés & LeDuc, Philip R., 2022. "Shadow modeling in urban environments for solar harvesting devices with freely defined positions and orientations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    2. Seyed Abbas Mousavi Maleki & H. Hizam & Chandima Gomes, 2017. "Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited," Energies, MDPI, vol. 10(1), pages 1-28, January.
    3. Marques Filho, Edson P. & Oliveira, Amauri P. & Vita, Willian A. & Mesquita, Francisco L.L. & Codato, Georgia & Escobedo, João F. & Cassol, Mariana & França, José Ricardo A., 2016. "Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling," Renewable Energy, Elsevier, vol. 91(C), pages 64-74.
    4. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.
    5. Abreu, Edgar F.M. & Canhoto, Paulo & Costa, Maria João, 2019. "Prediction of diffuse horizontal irradiance using a new climate zone model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 28-42.
    6. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    7. Božnar, Marija Zlata & Grašič, Boštjan & Oliveira, Amauri Pereira de & Soares, Jacyra & Mlakar, Primož, 2017. "Spatially transferable regional model for half-hourly values of diffuse solar radiation for general sky conditions based on perceptron artificial neural networks," Renewable Energy, Elsevier, vol. 103(C), pages 794-810.
    8. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    9. Jamil, Basharat & Akhtar, Naiem, 2017. "Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models," Energy, Elsevier, vol. 131(C), pages 149-164.
    10. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2009. "Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil," Applied Energy, Elsevier, vol. 86(3), pages 299-309, March.
    11. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2008. "Solar radiation modelling for the simulation of photovoltaic systems," Renewable Energy, Elsevier, vol. 33(5), pages 1109-1120.
    12. Alam, Shah & Kaushik, S.C. & Garg, S.N., 2009. "Assessment of diffuse solar energy under general sky condition using artificial neural network," Applied Energy, Elsevier, vol. 86(4), pages 554-564, April.
    13. Kuo, Chia-Wei & Chang, Wen-Chey & Chang, Keh-Chin, 2014. "Modeling the hourly solar diffuse fraction in Taiwan," Renewable Energy, Elsevier, vol. 66(C), pages 56-61.
    14. Sabzpooshani, Majid & Mohammadi, Kasra, 2014. "Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran," Energy, Elsevier, vol. 69(C), pages 571-577.
    15. Saioa Etxebarria Berrizbeitia & Eulalia Jadraque Gago & Tariq Muneer, 2020. "Empirical Models for the Estimation of Solar Sky-Diffuse Radiation. A Review and Experimental Analysis," Energies, MDPI, vol. 13(3), pages 1-23, February.
    16. Jacovides, C.P. & Boland, J. & Asimakopoulos, D.N. & Kaltsounides, N.A., 2010. "Comparing diffuse radiation models with one predictor for partitioning incident PAR radiation into its diffuse component in the eastern Mediterranean basin," Renewable Energy, Elsevier, vol. 35(8), pages 1820-1827.
    17. Liu, Peirong & Tong, Xiaojuan & Zhang, Jinsong & Meng, Ping & Li, Jun & Zhang, Jingru, 2020. "Estimation of half-hourly diffuse solar radiation over a mixed plantation in north China," Renewable Energy, Elsevier, vol. 149(C), pages 1360-1369.
    18. Bakirci, Kadir, 2012. "General models for optimum tilt angles of solar panels: Turkey case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6149-6159.
    19. Karakoti, Indira & Pande, Bimal & Pandey, Kavita, 2011. "Evaluation of different diffuse radiation models for Indian stations and predicting the best fit model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2378-2384, June.
    20. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:730-740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.