IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v76y2015icp234-241.html
   My bibliography  Save this article

Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design

Author

Listed:
  • Schleicher, W.C.
  • Riglin, J.D.
  • Oztekin, A.

Abstract

Portable micro-hydrokinetic turbines are designed and characterized using computational fluid dynamics (CFD) simulations. The two equation k–ω shear-stress transport (SST) turbulence model is employed to predict quasi steady flow structures for a wide range of tip-speed ratios. Seven input design parameters selected a priori are used to create preliminary turbine rotor designs by using a hydraulic design methodology. Various blade designs are characterized and compared in terms of torque and thrust over a range of operating conditions. Performance characteristics of two, three, and four blade designs are shown to be similar. The results indicate that a maximum power coefficient of 0.43 with a 73.7% efficiency relative to Betz limit is achieved. The portable hydrokinetic turbines, designed and characterized here, do not require large civil structures, making this technology an attractive alternative to conventional hydropower.

Suggested Citation

  • Schleicher, W.C. & Riglin, J.D. & Oztekin, A., 2015. "Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design," Renewable Energy, Elsevier, vol. 76(C), pages 234-241.
  • Handle: RePEc:eee:renene:v:76:y:2015:i:c:p:234-241
    DOI: 10.1016/j.renene.2014.11.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114007472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.11.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2008. "The prediction of the hydrodynamic performance of marine current turbines," Renewable Energy, Elsevier, vol. 33(5), pages 1085-1096.
    2. Myers, L. & Bahaj, A.S., 2006. "Power output performance characteristics of a horizontal axis marine current turbine," Renewable Energy, Elsevier, vol. 31(2), pages 197-208.
    3. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2006. "Hydrodynamics of marine current turbines," Renewable Energy, Elsevier, vol. 31(2), pages 249-256.
    4. Alexander, K.V. & Giddens, E.P. & Fuller, A.M., 2009. "Axial-flow turbines for low head microhydro systems," Renewable Energy, Elsevier, vol. 34(1), pages 35-47.
    5. Hwang, In Seong & Lee, Yun Han & Kim, Seung Jo, 2009. "Optimization of cycloidal water turbine and the performance improvement by individual blade control," Applied Energy, Elsevier, vol. 86(9), pages 1532-1540, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Pablo Castaño Serna & Ainhoa Rubio-Clemente & Edwin Chica, 2024. "Design of a Wave Generation System Using an Oscillating Paddle-Type Device Anchored to Fixed Structures on the Coast," Energies, MDPI, vol. 17(13), pages 1-24, June.
    2. Gao, Jinjin & Liu, Han & Lee, Jiyong & Zheng, Yuan & Guala, Michele & Shen, Lian, 2022. "Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows," Renewable Energy, Elsevier, vol. 181(C), pages 1305-1316.
    3. Yah, Nor F. & Oumer, Ahmed N. & Idris, Mat S., 2017. "Small scale hydro-power as a source of renewable energy in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 228-239.
    4. John, Bony & Varghese, James, 2021. "Sizing and techno-economic analysis of hydrokinetic turbine based standalone hybrid energy systems," Energy, Elsevier, vol. 221(C).
    5. Jonathan Aguilar & Ainhoa Rubio-Clemente & Laura Velasquez & Edwin Chica, 2019. "Design and Optimization of a Multi-Element Hydrofoil for a Horizontal-Axis Hydrokinetic Turbine," Energies, MDPI, vol. 12(24), pages 1-18, December.
    6. El Fajri, Oumnia & Bowman, Joshua & Bhushan, Shanti & Thompson, David & O'Doherty, Tim, 2022. "Numerical study of the effect of tip-speed ratio on hydrokinetic turbine wake recovery," Renewable Energy, Elsevier, vol. 182(C), pages 725-750.
    7. Riglin, Jacob & Daskiran, Cosan & Jonas, Joseph & Schleicher, W. Chris & Oztekin, Alparslan, 2016. "Hydrokinetic turbine array characteristics for river applications and spatially restricted flows," Renewable Energy, Elsevier, vol. 97(C), pages 274-283.
    8. Riglin, Jacob & Carter, Fred & Oblas, Nick & Schleicher, W. Chris & Daskiran, Cosan & Oztekin, Alparslan, 2016. "Experimental and numerical characterization of a full-scale portable hydrokinetic turbine prototype for river applications," Renewable Energy, Elsevier, vol. 99(C), pages 772-783.
    9. Zitti, Gianluca & Fattore, Fernando & Brunori, Alessandro & Brunori, Bruno & Brocchini, Maurizio, 2020. "Efficiency evaluation of a ductless Archimedes turbine: Laboratory experiments and numerical simulations," Renewable Energy, Elsevier, vol. 146(C), pages 867-879.
    10. Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2013. "Design of a horizontal axis tidal current turbine," Applied Energy, Elsevier, vol. 111(C), pages 161-174.
    2. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2014. "Marine current energy resource assessment and design of a marine current turbine for Fiji," Renewable Energy, Elsevier, vol. 65(C), pages 14-22.
    3. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    4. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    5. Val, Dimitri V. & Chernin, Leon & Yurchenko, Daniil V., 2014. "Reliability analysis of rotor blades of tidal stream turbines," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 26-33.
    6. Abutunis, Abdulaziz & Hussein, Rafid & Chandrashekhara, K., 2019. "A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application," Renewable Energy, Elsevier, vol. 136(C), pages 1281-1293.
    7. Uşar, D. & Bal, Ş., 2015. "Cavitation simulation on horizontal axis marine current turbines," Renewable Energy, Elsevier, vol. 80(C), pages 15-25.
    8. Wang, Shu-qi & Sun, Ke & Xu, Gang & Liu, Yong-tao & Bai, Xu, 2017. "Hydrodynamic analysis of horizontal-axis tidal current turbine with rolling and surging coupled motions," Renewable Energy, Elsevier, vol. 102(PA), pages 87-97.
    9. Luznik, Luksa & Flack, Karen A. & Lust, Ethan E. & Taylor, Katharin, 2013. "The effect of surface waves on the performance characteristics of a model tidal turbine," Renewable Energy, Elsevier, vol. 58(C), pages 108-114.
    10. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    11. Wang, Wen-Quan & Yin, Rui & Yan, Yan, 2019. "Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 133(C), pages 91-102.
    12. Lo Brutto, Ottavio A. & Guillou, Sylvain S. & Thiébot, Jérôme & Gualous, Hamid, 2017. "Assessing the effectiveness of a global optimum strategy within a tidal farm for power maximization," Applied Energy, Elsevier, vol. 204(C), pages 653-666.
    13. Huang, B. & Kanemoto, T., 2015. "Multi-objective numerical optimization of the front blade pitch angle distribution in a counter-rotating type horizontal-axis tidal turbine," Renewable Energy, Elsevier, vol. 81(C), pages 837-844.
    14. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    15. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    16. Li, Wei & Zhou, Hongbin & Liu, Hongwei & Lin, Yonggang & Xu, Quankun, 2016. "Review on the blade design technologies of tidal current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 414-422.
    17. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    18. Zhang, Liang & Wang, Shu-qi & Sheng, Qi-hu & Jing, Feng-mei & Ma, Yong, 2015. "The effects of surge motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine," Renewable Energy, Elsevier, vol. 74(C), pages 796-802.
    19. Grogan, D.M. & Leen, S.B. & Kennedy, C.R. & Ó Brádaigh, C.M., 2013. "Design of composite tidal turbine blades," Renewable Energy, Elsevier, vol. 57(C), pages 151-162.
    20. Mohammad Hassan Khanjanpour & Akbar A. Javadi, 2020. "Experimental and CFD Analysis of Impact of Surface Roughness on Hydrodynamic Performance of a Darrieus Hydro (DH) Turbine," Energies, MDPI, vol. 13(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:76:y:2015:i:c:p:234-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.