IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v138y2019icp1152-1165.html
   My bibliography  Save this article

Response of U-Oscillating Water Column arrays: semi-analytical approach and numerical results

Author

Listed:
  • Malara, Giovanni
  • Arena, Felice

Abstract

Nowadays, sea waves are recognized as an energy source that may contribute in the future to the global electricity demand. This fact manifests itself with the quite relevant number of proposed devices aimed at converting wave energy to electrical energy. In this context, the Oscillating Water Column (OWC) system plays a leading role, as it demonstrated flexibility, in the sense that it can work in conjunction with other marine systems, and effectiveness from a strict energy harvesting perspective. As a subclass, the U-Oscillating Water Column (U-OWC) was developed for further improving the OWC performance in mild-seas, where the natural resource is not abundant, such as in the Mediterranean Sea. This wave energy converter is composed by a water column in the lower part, an air pocket over the water column which is connected to a Power Take-Off device, and an external vertical duct connecting the water column to the open wave field. This paper deals with the problem of determining the response of a plant composed by an array of U-OWCs. This problem is relevant to the design of upright breakwaters embodying U-OWC chambers, where the interaction between contiguous U-OWCs influences the dynamics of each water column and, thus, the energy-wise performance of the whole plant. The models proposed currently in the literature are based on two-dimensional approaches neglecting three-dimensional effects and the mutual interference among the chambers. Therefore, firstly, the system of integro-differential equations describing the array dynamics is derived. Then, a semi-analytical approach is proposed for determining infinite frequency added mass and retardation function matrices. For this purpose, the wave field is described by the linear water wave theory and the boundary value problems pertaining to the determination of these hydrodynamic parameters are solved by combining Fourier transform and domain decomposition techniques.

Suggested Citation

  • Malara, Giovanni & Arena, Felice, 2019. "Response of U-Oscillating Water Column arrays: semi-analytical approach and numerical results," Renewable Energy, Elsevier, vol. 138(C), pages 1152-1165.
  • Handle: RePEc:eee:renene:v:138:y:2019:i:c:p:1152-1165
    DOI: 10.1016/j.renene.2019.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119301624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.02.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malara, G. & Gomes, R.P.F. & Arena, F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2017. "The influence of three-dimensional effects on the performance of U-type oscillating water column wave energy harvesters," Renewable Energy, Elsevier, vol. 111(C), pages 506-522.
    2. Arena, Felice & Laface, Valentina & Malara, Giovanni & Romolo, Alessandra & Viviano, Antonino & Fiamma, Vincenzo & Sannino, Gianmaria & Carillo, Adriana, 2015. "Wave climate analysis for the design of wave energy harvesters in the Mediterranean Sea," Renewable Energy, Elsevier, vol. 77(C), pages 125-141.
    3. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    4. Malara, Giovanni & Arena, Felice, 2013. "Analytical modelling of an U-Oscillating Water Column and performance in random waves," Renewable Energy, Elsevier, vol. 60(C), pages 116-126.
    5. Babarit, A., 2013. "On the park effect in arrays of oscillating wave energy converters," Renewable Energy, Elsevier, vol. 58(C), pages 68-78.
    6. Malara, Giovanni & Romolo, Alessandra & Fiamma, Vincenzo & Arena, Felice, 2017. "On the modelling of water column oscillations in U-OWC energy harvesters," Renewable Energy, Elsevier, vol. 101(C), pages 964-972.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scialò, A. & Henriques, J.C.C. & Malara, G. & Falcão, A.F.O. & Gato, L.M.C. & Arena, F., 2021. "Power take-off selection for a fixed U-OWC wave power plant in the Mediterranean Sea: The case of Roccella Jonica," Energy, Elsevier, vol. 215(PA).
    2. Moretti, Giacomo & Malara, Giovanni & Scialò, Andrea & Daniele, Luca & Romolo, Alessandra & Vertechy, Rocco & Fontana, Marco & Arena, Felice, 2020. "Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator," Renewable Energy, Elsevier, vol. 146(C), pages 628-642.
    3. Scandura, Pietro & Malara, Giovanni & Arena, Felice, 2021. "The inclusion of non-linearities in a mathematical model for U-Oscillating Water Column wave energy converters," Energy, Elsevier, vol. 218(C).
    4. Guo, Baoming & Ning, Dezhi & Wang, Rongquan & Ding, Boyin, 2021. "Hydrodynamics of an oscillating water column WEC - Breakwater integrated system with a pitching front-wall," Renewable Energy, Elsevier, vol. 176(C), pages 67-80.
    5. Gradowski, M. & Gomes, R.P.F. & Alves, M., 2020. "Hydrodynamic optimisation of an axisymmetric floating Oscillating Water Column type wave energy converter with an enlarged inner tube," Renewable Energy, Elsevier, vol. 162(C), pages 1519-1532.
    6. Lorenzo Ciappi & Lapo Cheli & Irene Simonetti & Alessandro Bianchini & Giampaolo Manfrida & Lorenzo Cappietti, 2020. "Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots," Energies, MDPI, vol. 13(21), pages 1-28, October.
    7. Didier, Eric & Teixeira, Paulo R.F., 2024. "Numerical analysis of 3D hydrodynamics and performance of an array of oscillating water column wave energy converters integrated into a vertical breakwater," Renewable Energy, Elsevier, vol. 225(C).
    8. Zhu, Guixun & Samuel, John & Zheng, Siming & Hughes, Jason & Simmonds, David & Greaves, Deborah, 2023. "Numerical investigation on the hydrodynamic performance of a 2D U-shaped Oscillating Water Column wave energy converter," Energy, Elsevier, vol. 274(C).
    9. Güths, A.K. & Teixeira, P.R.F. & Didier, E., 2022. "A novel geometry of an onshore Oscillating Water Column wave energy converter," Renewable Energy, Elsevier, vol. 201(P1), pages 938-949.
    10. Trivedi, Kshma & Koley, Santanu, 2023. "Performance of a hybrid wave energy converter device consisting of a piezoelectric plate and oscillating water column device placed over an undulated seabed," Applied Energy, Elsevier, vol. 333(C).
    11. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Yong Ma & Shan Ai & Lele Yang & Aiming Zhang & Sen Liu & Binghao Zhou, 2020. "Hydrodynamic Performance of a Pitching Float Wave Energy Converter," Energies, MDPI, vol. 13(7), pages 1-27, April.
    13. Guo, Baoming & Wang, Rongquan & Ning, Dezhi & Chen, Lifen & Sulisz, Wojciech, 2020. "Hydrodynamic performance of a novel WEC-breakwater integrated system consisting of triple dual-freedom pontoons," Energy, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trivedi, Kshma & Koley, Santanu, 2021. "Mathematical modeling of breakwater-integrated oscillating water column wave energy converter devices under irregular incident waves," Renewable Energy, Elsevier, vol. 178(C), pages 403-419.
    2. Scialò, A. & Henriques, J.C.C. & Malara, G. & Falcão, A.F.O. & Gato, L.M.C. & Arena, F., 2021. "Power take-off selection for a fixed U-OWC wave power plant in the Mediterranean Sea: The case of Roccella Jonica," Energy, Elsevier, vol. 215(PA).
    3. Scandura, Pietro & Malara, Giovanni & Arena, Felice, 2021. "The inclusion of non-linearities in a mathematical model for U-Oscillating Water Column wave energy converters," Energy, Elsevier, vol. 218(C).
    4. Moretti, Giacomo & Malara, Giovanni & Scialò, Andrea & Daniele, Luca & Romolo, Alessandra & Vertechy, Rocco & Fontana, Marco & Arena, Felice, 2020. "Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator," Renewable Energy, Elsevier, vol. 146(C), pages 628-642.
    5. Correia da Fonseca, F.X. & Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2016. "Model testing of an oscillating water column spar-buoy wave energy converter isolated and in array: Motions and mooring forces," Energy, Elsevier, vol. 112(C), pages 1207-1218.
    6. Louise O’Boyle & Björn Elsäßer & Trevor Whittaker, 2017. "Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    7. Cui, Lin & Zheng, Siming & Zhang, Yongliang & Miles, Jon & Iglesias, Gregorio, 2021. "Wave power extraction from a hybrid oscillating water column-oscillating buoy wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).
    9. Zheng, Siming & Zhang, Yongliang, 2018. "Theoretical modelling of a new hybrid wave energy converter in regular waves," Renewable Energy, Elsevier, vol. 128(PA), pages 125-141.
    10. Zheng, Siming & Zhang, Yongliang & Iglesias, Gregorio, 2020. "Power capture performance of hybrid wave farms combining different wave energy conversion technologies: The H-factor," Energy, Elsevier, vol. 204(C).
    11. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
    12. Mayon, Robert & Ning, Dezhi & Zhang, Chongwei & Chen, Lifen & Wang, Rongquan, 2021. "Wave energy capture by an omnidirectional point sink oscillating water column system," Applied Energy, Elsevier, vol. 304(C).
    13. Moretti, Giacomo & Santos Herran, Miguel & Forehand, David & Alves, Marco & Jeffrey, Henry & Vertechy, Rocco & Fontana, Marco, 2020. "Advances in the development of dielectric elastomer generators for wave energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    14. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2020. "Time-domain simulation of a slack-moored floating oscillating water column and validation with physical model tests," Renewable Energy, Elsevier, vol. 149(C), pages 165-180.
    15. Roh Chan & Kil-Won Kim & Ji-Yong Park & Se-Wan Park & Kyong-Hwan Kim & Sang-Shin Kwak, 2020. "Power Performance Analysis According to the Configuration and Load Control Algorithm of Power Take-Off System for Oscillating Water Column Type Wave Energy Converters," Energies, MDPI, vol. 13(23), pages 1-30, December.
    16. Emiliano Renzi & Simone Michele & Siming Zheng & Siya Jin & Deborah Greaves, 2021. "Niche Applications and Flexible Devices for Wave Energy Conversion: A Review," Energies, MDPI, vol. 14(20), pages 1-25, October.
    17. Domenico Curto & Vincenzo Franzitta & Andrea Guercio, 2021. "Sea Wave Energy. A Review of the Current Technologies and Perspectives," Energies, MDPI, vol. 14(20), pages 1-31, October.
    18. Aristodemo, Francesco & Algieri Ferraro, Danilo, 2018. "Feasibility of WEC installations for domestic and public electrical supplies: A case study off the Calabrian coast," Renewable Energy, Elsevier, vol. 121(C), pages 261-285.
    19. Guo, Baoming & Ning, Dezhi & Wang, Rongquan & Ding, Boyin, 2021. "Hydrodynamics of an oscillating water column WEC - Breakwater integrated system with a pitching front-wall," Renewable Energy, Elsevier, vol. 176(C), pages 67-80.
    20. Viviano, Antonino & Naty, Stefania & Foti, Enrico & Bruce, Tom & Allsop, William & Vicinanza, Diego, 2016. "Large-scale experiments on the behaviour of a generalised Oscillating Water Column under random waves," Renewable Energy, Elsevier, vol. 99(C), pages 875-887.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:1152-1165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.