IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224013938.html
   My bibliography  Save this article

Toward sustainable recycled methanol production from CO2 and steel by-product gases in South Korea; process design and assessment

Author

Listed:
  • Maqbool, Wahab
  • Kwon, Yuree
  • Im, Mintaek
  • An, Jinjoo

Abstract

Methanol is receiving considerable attention as an alternative fuel because of its potential role as a transitional option in mitigating greenhouse gas emissions and enabling the transition towards biofuels. Recycled methanol, produced using captured CO2 or industrial by-product gases, emerges as an attractive alternative in South Korea, especially considering the excessive emissions from its energy and industrial sectors. However, assessing technological superiority amongst a range of alternatives remains challenging. This study aims to assess and compare various methanol production pathways utilizing captured CO2 and by-product gases from steel industry within context of South Korea. The selected technologies are either currently in industrial use or pivotal for future industrial applications. A unified process design and assessment framework was employed to model and simulate eight technological conversion processes. These processes underwent evaluation based on key performance indicators, accompanied by comprehensive techno-economic and environmental life cycle assessments. Additionally, comparisons were made with conventional fossil-based methanol production, considering different hydrogen and electricity production routes. This study provides valuable insights into the viability of recycled methanol pathways in terms of process performance, economic and environmental feasibility and will facilitate the practical implementation of recycled methanol, contributing towards achieving carbon neutrality objectives.

Suggested Citation

  • Maqbool, Wahab & Kwon, Yuree & Im, Mintaek & An, Jinjoo, 2024. "Toward sustainable recycled methanol production from CO2 and steel by-product gases in South Korea; process design and assessment," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224013938
    DOI: 10.1016/j.energy.2024.131620
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224013938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131620?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bos, M.J. & Kersten, S.R.A. & Brilman, D.W.F., 2020. "Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture," Applied Energy, Elsevier, vol. 264(C).
    2. Woo-Cheol Jeong & Da-Han Lee & Jae Hyung Roh & Jong-Bae Park, 2022. "Scenario Analysis of the GHG Emissions in the Electricity Sector through 2030 in South Korea Considering Updated NDC," Energies, MDPI, vol. 15(9), pages 1-12, May.
    3. Meunier, Nicolas & Chauvy, Remi & Mouhoubi, Seloua & Thomas, Diane & De Weireld, Guy, 2020. "Alternative production of methanol from industrial CO2," Renewable Energy, Elsevier, vol. 146(C), pages 1192-1203.
    4. Liu, Yigang & Li, Guoxuan & Chen, Zhengrun & Shen, Yuanyuan & Zhang, Hongru & Wang, Shuai & Qi, Jianguang & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2020. "Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment," Energy, Elsevier, vol. 204(C).
    5. Adnan, Muflih A. & Kibria, Md Golam, 2020. "Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways," Applied Energy, Elsevier, vol. 278(C).
    6. Kang, Dongseong & Byun, Jaewon & Han, Jee-hoon, 2023. "Environmental impact analysis of steelmaking off-gases on methanol production," Energy, Elsevier, vol. 277(C).
    7. Ganesh, Ibram, 2014. "Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 221-257.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Renxing & Kang, Lixia & Liu, Yongzhong, 2022. "Renewable synthetic methanol system design based on modular production lines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Tola, Vittorio & Lonis, Francesco, 2021. "Low CO2 emissions chemically recuperated gas turbines fed by renewable methanol," Applied Energy, Elsevier, vol. 298(C).
    3. Rahmat, Yoga & Maier, Simon & Moser, Francisco & Raab, Moritz & Hoffmann, Christian & Repke, Jens-Uwe & Dietrich, Ralph-Uwe, 2023. "Techno-economic and exergy analysis of e-methanol production under fixed operating conditions in Germany," Applied Energy, Elsevier, vol. 351(C).
    4. Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).
    5. Adnan, Muflih A. & Kibria, Md Golam, 2020. "Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways," Applied Energy, Elsevier, vol. 278(C).
    6. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan MacA., 2024. "Techno-economics of renewable hydrogen export: A case study for Australia-Japan," Applied Energy, Elsevier, vol. 374(C).
    7. Zhou, Huairong & Cao, Abo & Meng, Wenliang & Wang, Dongliang & Li, Guixian & Yang, Siyu, 2024. "Process integration and analysis of coupling solid oxide electrolysis cell (SOEC) and CO2 to methanol," Energy, Elsevier, vol. 307(C).
    8. Mancusi, E. & Bareschino, P. & Brachi, P. & Coppola, A. & Ruoppolo, G. & Urciuolo, M. & Pepe, F., 2021. "Feasibility of an integrated biomass-based CLC combustion and a renewable-energy-based methanol production systems," Renewable Energy, Elsevier, vol. 179(C), pages 29-36.
    9. Kim, Heehyang & Kim, Ayeon & Byun, Manhee & Lim, Hankwon, 2021. "Comparative feasibility studies of H2 supply scenarios for methanol as a carbon-neutral H2 carrier at various scales and distances," Renewable Energy, Elsevier, vol. 180(C), pages 552-559.
    10. Harris, Kylee & Grim, R. Gary & Huang, Zhe & Tao, Ling, 2021. "A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: Opportunities and barriers to commercialization," Applied Energy, Elsevier, vol. 303(C).
    11. Tabibian, Seyed Shayan & Sharifzadeh, Mahdi, 2023. "Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    12. Kim, Seokyoung & Dodds, Paul E. & Butnar, Isabela, 2024. "Technoeconomic characterisation of low-carbon liquid hydrocarbons production," Energy, Elsevier, vol. 294(C).
    13. Zhou, Xin & Yan, Hao & Sun, Zongzhuang & Feng, Xiang & Zhao, Hui & Liu, Yibin & Chen, Xiaobo & Yang, Chaohe, 2021. "Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment," Energy, Elsevier, vol. 237(C).
    14. Wang, Qian & Du, Caiyi & Zhang, Xueguang, 2024. "Direct air capture capacity configuration and cost allocation based on sharing mechanism," Applied Energy, Elsevier, vol. 374(C).
    15. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    16. Chung, Wei-Chieh & Chang, Moo-Been, 2016. "Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 13-31.
    17. Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
    18. Konstantinos Kappis & Joan Papavasiliou & George Avgouropoulos, 2021. "Methanol Reforming Processes for Fuel Cell Applications," Energies, MDPI, vol. 14(24), pages 1-30, December.
    19. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    20. Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora Andreea & Cormos, Calin-Cristian, 2022. "Life cycle assessment of methanol production and conversion into various chemical intermediates and products," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224013938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.