Comparative energetic assessment of methanol production from CO2: Chemical versus electrochemical process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2015.12.027
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Bao-Hong & Zhang, Nan & Smith, Robin, 2016. "Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution," Applied Energy, Elsevier, vol. 161(C), pages 707-717.
- Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
- Cheng, Ya-Hsin & Nguyen, Van-Huy & Chan, Hsiang-Yu & Wu, Jeffrey C.S. & Wang, Wei-Hon, 2015. "Photo-enhanced hydrogenation of CO2 to mimic photosynthesis by CO co-feed in a novel twin reactor," Applied Energy, Elsevier, vol. 147(C), pages 318-324.
- Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
- Stempien, Jan Pawel & Ni, Meng & Sun, Qiang & Chan, Siew Hwa, 2015. "Thermodynamic analysis of combined Solid Oxide Electrolyzer and Fischer–Tropsch processes," Energy, Elsevier, vol. 81(C), pages 682-690.
- Mundaca, Luis & Román, Rocio & Cansino, José M., 2015. "Towards a Green Energy Economy? A macroeconomic-climate evaluation of Sweden’s CO2 emissions," Applied Energy, Elsevier, vol. 148(C), pages 196-209.
- Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
- Chen, QianQian & Tang, ZhiYong & Lei, Yang & Sun, YuHan & Jiang, MianHeng, 2015. "Feasibility analysis of nuclear–coal hybrid energy systems from the perspective of low-carbon development," Applied Energy, Elsevier, vol. 158(C), pages 619-630.
- Ganesh, Ibram, 2014. "Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 221-257.
- Sanna, Aimaro & Ramli, Ili & Mercedes Maroto-Valer, M., 2015. "Development of sodium/lithium/fly ash sorbents for high temperature post-combustion CO2 capture," Applied Energy, Elsevier, vol. 156(C), pages 197-206.
- Grace, Andrews Nirmala & Choi, Song Yi & Vinoba, Mari & Bhagiyalakshmi, Margandan & Chu, Dae Hyun & Yoon, Yeoil & Nam, Sung Chan & Jeong, Soon Kwan, 2014. "Electrochemical reduction of carbon dioxide at low overpotential on a polyaniline/Cu2O nanocomposite based electrode," Applied Energy, Elsevier, vol. 120(C), pages 85-94.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).
- Andika, Riezqa & Nandiyanto, Asep Bayu Dani & Putra, Zulfan Adi & Bilad, Muhammad Roil & Kim, Young & Yun, Choa Mun & Lee, Moonyong, 2018. "Co-electrolysis for power-to-methanol applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 227-241.
- Luo, Ning & Dou, Binlin & Zhang, Hua & Yang, Tiebing & Wu, Kai & Wu, Chunfei & Chen, Haisheng & Xu, Yujie & Li, Wei, 2023. "Process design and energy analysis on synthesis of liquid fuels in an integrated CCUS system," Applied Energy, Elsevier, vol. 351(C).
- Lee, Boreum & Lee, Hyunjun & Lim, Dongjun & Brigljević, Boris & Cho, Wonchul & Cho, Hyun-Seok & Kim, Chang-Hee & Lim, Hankwon, 2020. "Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible?," Applied Energy, Elsevier, vol. 279(C).
- Tang, Qingli & Ji, Wenchao & Russell, Christopher K. & Cheng, Zhiwen & Zhang, Yulong & Fan, Maohong & Shen, Zhemin, 2019. "Understanding the catalytic mechanisms of CO2 hydrogenation to methanol on unsupported and supported Ga-Ni clusters," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Morgenthaler, Simon & Kuckshinrichs, Wilhelm & Witthaut, Dirk, 2020. "Optimal system layout and locations for fully renewable high temperature co-electrolysis," Applied Energy, Elsevier, vol. 260(C).
- Zhang, Hanfei & Desideri, Umberto, 2020. "Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers," Energy, Elsevier, vol. 199(C).
- Abu Yousuf & Md Shahadat Hossain & Nishat Paul & Md Woashib Shikder & Deepak Kumar & Domenico Pirozzi & Ahmed Nazmus Sakib & Pejman Kazempoor, 2023. "Process Integration Approach to the Methanol (MeOH) Production Variability from Syngas and Industrial Waste Gases," Energies, MDPI, vol. 16(18), pages 1-24, September.
- Yang, Hou-Yun & Wang, Yi-Xuan & He, Chuan-Shu & Qin, Yuan & Li, Wen-Qiang & Li, Wei-Hua & Mu, Yang, 2020. "Redox mediator-modified biocathode enables highly efficient microbial electro-synthesis of methane from carbon dioxide," Applied Energy, Elsevier, vol. 274(C).
- Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
- Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Samuel Simon Araya & Vincenzo Liso & Xiaoti Cui & Na Li & Jimin Zhu & Simon Lennart Sahlin & Søren Højgaard Jensen & Mads Pagh Nielsen & Søren Knudsen Kær, 2020. "A Review of The Methanol Economy: The Fuel Cell Route," Energies, MDPI, vol. 13(3), pages 1-32, January.
- Cui, Zhengxing & Wang, Yeqing & Zhang, Peipei & Lu, Song & Chen, Yuxuan & Yu, Xiaotao & Guo, Min & Liu, Tiancun & Ying, Jiadi & Shen, Qi & Jin, Yinying & Yu, Zhixin, 2024. "Stable Cuδ+ species - Catalyzed CO₂ hydrogenation to methanol in silanol nests on Cu/S-1 catalyst," Applied Energy, Elsevier, vol. 365(C).
- Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora Andreea & Cormos, Calin-Cristian, 2022. "Life cycle assessment of methanol production and conversion into various chemical intermediates and products," Energy, Elsevier, vol. 259(C).
- Lu, Xu & Leung, Dennis Y.C. & Wang, Huizhi & Xuan, Jin, 2017. "A high performance dual electrolyte microfluidic reactor for the utilization of CO2," Applied Energy, Elsevier, vol. 194(C), pages 549-559.
- Li, Xiaodong & Jinxi, Wang, 2023. "A novel process for the simultaneous production of methanol, oxygen, and electricity using a PEM electrolyzer and agricultural-based landfill gas-fed oxyfuel combustion power plant," Energy, Elsevier, vol. 284(C).
- Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
- Gu, Hongfei & Liu, Jianzi & Zhou, Xingchen & Wu, Qiwei & Liu, Yaodong & Yu, Shuaixian & Qiu, Wenying & Xu, Jianguo, 2023. "Modelling of a novel electricity and methanol co-generation using heat recovery and CO2 capture: Comprehensive thermodynamic, economic, and environmental analyses," Energy, Elsevier, vol. 278(C).
- Cheng, Xiao & Chen, Rong & Zhu, Xun & Liao, Qiang & An, Liang & Ye, Dingding & He, Xuefeng & Li, Shuzhe & Li, Lin, 2017. "An optofluidic planar microreactor for photocatalytic reduction of CO2 in alkaline environment," Energy, Elsevier, vol. 120(C), pages 276-282.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
- Chen, Chao & Lu, Yangsiyu & Banares-Alcantara, Rene, 2019. "Direct and indirect electrification of chemical industry using methanol production as a case study," Applied Energy, Elsevier, vol. 243(C), pages 71-90.
- Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
- Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
- Crivellari, Anna & Cozzani, Valerio & Dincer, Ibrahim, 2019. "Exergetic and exergoeconomic analyses of novel methanol synthesis processes driven by offshore renewable energies," Energy, Elsevier, vol. 187(C).
- Chen, Huiyao & Chu, Fengming & Yang, Lijun & Ola, Oluwafunmilola & Du, Xiaoze & Yang, Yongping, 2018. "Enhanced photocatalytic reduction of carbon dioxide in optical fiber monolith reactor with transparent glass balls," Applied Energy, Elsevier, vol. 230(C), pages 1403-1413.
- Zain, Munirah Md & Mohamed, Abdul Rahman, 2018. "An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 56-63.
- Wiesberg, Igor Lapenda & Brigagão, George Victor & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Carbon dioxide management via exergy-based sustainability assessment: Carbon Capture and Storage versus conversion to methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 720-732.
- Meunier, Nicolas & Chauvy, Remi & Mouhoubi, Seloua & Thomas, Diane & De Weireld, Guy, 2020. "Alternative production of methanol from industrial CO2," Renewable Energy, Elsevier, vol. 146(C), pages 1192-1203.
- Samuel Simon Araya & Vincenzo Liso & Xiaoti Cui & Na Li & Jimin Zhu & Simon Lennart Sahlin & Søren Højgaard Jensen & Mads Pagh Nielsen & Søren Knudsen Kær, 2020. "A Review of The Methanol Economy: The Fuel Cell Route," Energies, MDPI, vol. 13(3), pages 1-32, January.
- Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
- Chauvy, Remi & Meunier, Nicolas & Thomas, Diane & De Weireld, Guy, 2019. "Selecting emerging CO2 utilization products for short- to mid-term deployment," Applied Energy, Elsevier, vol. 236(C), pages 662-680.
- Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
- Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
- Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
- Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
- Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
- Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
- Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
- Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
More about this item
Keywords
Carbon dioxide recycling; Methanol; Carbon dioxide hydrogenation; High temperature electrolysis; Pinch analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:165:y:2016:i:c:p:1-13. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.