IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp111-124.html
   My bibliography  Save this article

Impact of bio-mix fuel on performance, emission and combustion characteristics in a single cylinder DICI VCR engine

Author

Listed:
  • Sharma, Vikas
  • Duraisamy, Ganesh
  • Arumugum, Kanagaraj

Abstract

In present work, Jatropha, Karanja (non-edible) and Cottonseed (edible) oils were mixed in the selected proportions and then converted to biomix methyl ester through transesterification process. Experiments were performed on a single cylinder non-road diesel engine with biomix methyl ester and results were compared with neat diesel, Jatropha, Karanja and Cottonseed biodiesel's. The major limitation observed in the biodiesel research is the fuel composition variability raised due to feedstock quality and production process parameters. Hence to have a sustainable biodiesel production based on available feedstocks of the region with balanced proportion of saturated and unsaturated fatty acids, use of biomix fuel is proposed on non-road diesel engine in this study. Non-road diesel engines are widely used in agriculture, power generation and construction equipment's which is also consuming lot of diesel and emitting more emissions. Use of renewable biomix fuel on non-road diesel engines will cut carbon foot print on the environment and it is better than biodiesel derived from a single feedstock based on the composition, fuel properties, performance and emissions. The results also indicated that biomix fuel has higher brake thermal efficiency, lower oxides of nitrogen and carbon-di-oxide emissions compared to biodiesel derived from single feedstock.

Suggested Citation

  • Sharma, Vikas & Duraisamy, Ganesh & Arumugum, Kanagaraj, 2020. "Impact of bio-mix fuel on performance, emission and combustion characteristics in a single cylinder DICI VCR engine," Renewable Energy, Elsevier, vol. 146(C), pages 111-124.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:111-124
    DOI: 10.1016/j.renene.2019.06.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119309826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giakoumis, Evangelos G., 2013. "A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation," Renewable Energy, Elsevier, vol. 50(C), pages 858-878.
    2. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    3. Hwang, Joonsik & Qi, Donghui & Jung, Yongjin & Bae, Choongsik, 2014. "Effect of injection parameters on the combustion and emission characteristics in a common-rail direct injection diesel engine fueled with waste cooking oil biodiesel," Renewable Energy, Elsevier, vol. 63(C), pages 9-17.
    4. Smith, Paul C. & Ngothai, Yung & Dzuy Nguyen, Q. & O'Neill, Brian K., 2010. "Improving the low-temperature properties of biodiesel: Methods and consequences," Renewable Energy, Elsevier, vol. 35(6), pages 1145-1151.
    5. Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
    6. Sathiyamoorthi, R. & Sankaranarayanan, G. & Adhith kumaar, S.B. & Chiranjeevi, T. & Dilip Kumar, D., 2019. "Experimental investigation on performance, combustion and emission characteristics of a single cylinder diesel engine fuelled by biodiesel derived from Cymbopogon Martinii," Renewable Energy, Elsevier, vol. 132(C), pages 394-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas, Justin Jacob & Sabu, V.R. & Nagarajan, G. & Kumar, Suraj & Basrin, G., 2020. "Influence of waste vegetable oil biodiesel and hexanol on a reactivity controlled compression ignition engine combustion and emissions," Energy, Elsevier, vol. 206(C).
    2. S, Prabakaran & T, Mohanraj & A, Arumugam, 2021. "Azolla pinnata methyl ester production and process optimization using a novel heterogeneous catalyst," Renewable Energy, Elsevier, vol. 180(C), pages 353-371.
    3. Rajesh, K. & Natarajan, M.P. & Devan, P.K. & Ponnuvel, S., 2021. "Coconut fatty acid distillate as novel feedstock for biodiesel production and its characterization as a fuel for diesel engine," Renewable Energy, Elsevier, vol. 164(C), pages 1424-1435.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirner, Felix Sebastian & Hwang, Joonsik & Bae, Choongsik & Patel, Chetankumar & Gupta, Tarun & Agarwal, Avinash Kumar, 2019. "Performance and emission evaluation of a small-bore biodiesel compression-ignition engine," Energy, Elsevier, vol. 183(C), pages 971-982.
    2. Qian, Xiujuan & Gorte, Olga & Chen, Lin & Zhang, Wenming & Dong, Weiliang & Ma, Jiangfeng & Xin, Fengxue & Jiang, Min & Ochsenreither, Katrin, 2020. "Continuous self-provided fermentation for microbial lipids production from acetate by using oleaginous yeasts Cryptococcus podzolicus and Trichosporon porosum," Renewable Energy, Elsevier, vol. 146(C), pages 737-743.
    3. Muhammad Hanafi Azami & Mark Savill, 2017. "Pulse Detonation Assessment for Alternative Fuels," Energies, MDPI, vol. 10(3), pages 1-19, March.
    4. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    5. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.
    6. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Bhuiya, M.M.K., 2016. "Recent development of biodiesel combustion strategies and modelling for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1068-1086.
    7. Farhad M. Hossain & Jana Kosinkova & Richard J. Brown & Zoran Ristovski & Ben Hankamer & Evan Stephens & Thomas J. Rainey, 2017. "Experimental Investigations of Physical and Chemical Properties for Microalgae HTL Bio-Crude Using a Large Batch Reactor," Energies, MDPI, vol. 10(4), pages 1-16, April.
    8. Serrano, Marta & Oliveros, Rubén & Sánchez, Marcos & Moraschini, Andrea & Martínez, Mercedes & Aracil, José, 2014. "Influence of blending vegetable oil methyl esters on biodiesel fuel properties: Oxidative stability and cold flow properties," Energy, Elsevier, vol. 65(C), pages 109-115.
    9. Huang, Yongcheng & Li, Yaoting & Han, Xudong & Zhang, Jiating & Luo, Kun & Yang, Shangsheng & Wang, Jiyuan, 2020. "Investigation on fuel properties and engine performance of the extraction phase liquid of bio-oil/biodiesel blends," Renewable Energy, Elsevier, vol. 147(P1), pages 1990-2002.
    10. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    11. Lanjekar, R.D. & Deshmukh, D., 2016. "A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1401-1411.
    12. Lee, Sanghoon & Lee, Chang Sik & Park, Sungwook & Gupta, Jai Gopal & Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2017. "Spray characteristics, engine performance and emissions analysis for Karanja biodiesel and its blends," Energy, Elsevier, vol. 119(C), pages 138-151.
    13. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
    14. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    15. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    16. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    17. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    18. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    19. Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.
    20. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:111-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.