IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i6p1145-1151.html
   My bibliography  Save this article

Improving the low-temperature properties of biodiesel: Methods and consequences

Author

Listed:
  • Smith, Paul C.
  • Ngothai, Yung
  • Dzuy Nguyen, Q.
  • O'Neill, Brian K.

Abstract

Biodiesel is widely accepted as an additive for fossil derived diesel in compression ignition engines. It offers many advantages including: higher cetane number; reduced emissions of particulates, NOx, SOx, CO, and hydrocarbons; reduced toxicity; improved safety; and lower lifecycle CO2 emissions. A characteristic of biodiesel limiting its application is its relatively poor low-temperature flow properties, which are primarily a consequence of the fatty acid make-up of the oil feedstock. Attempts to influence the fatty acid profile of either the oil feedstock or the biodiesel product include winterisation and fractionation which reduce the fraction of saturated fatty acids and result in large reductions in yield. A reduction in saturated fatty acids reduces ignition quality of the fuel, while an increase in unsaturation reduces oxidation stability. Additives designed for petroleum diesel have been used with limited success and specific additives for biodiesel remain in their infancy. The addition of branched moieties either to the alkyl head-group of the ester or as a side-chain to the tail-group can reduce the cloud point. Specifically, the removal of the double bonds on the ester group and the addition of a side-chain may provide a benefit in terms of low-temperature properties and offer improved oxidation stability. However, a negative impact on ignition quality and viscosity may result.

Suggested Citation

  • Smith, Paul C. & Ngothai, Yung & Dzuy Nguyen, Q. & O'Neill, Brian K., 2010. "Improving the low-temperature properties of biodiesel: Methods and consequences," Renewable Energy, Elsevier, vol. 35(6), pages 1145-1151.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:6:p:1145-1151
    DOI: 10.1016/j.renene.2009.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109005564
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duffield, James A. & Shapouri, Hosein & Graboski, Michael S. & McCormick, Robert & Wilson, Richard, 1998. "U.S. Biodiesel Development: New Markets for Conventional and Genetically Modified Agricultural Products," Agricultural Economic Reports 34029, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Emission analysis of a modern Tier 4 DI diesel engine fueled by biodiesel-diesel blends with a cold flow improver (Wintron Synergy) at multiple idling conditions," Applied Energy, Elsevier, vol. 179(C), pages 45-54.
    2. Mohanan, Athira & Bouzidi, Laziz & Li, Shaojun & Narine, Suresh S., 2016. "Mitigating crystallization of saturated fames in biodiesel: 1. Lowering crystallization temperatures via addition of metathesized soybean oil," Energy, Elsevier, vol. 96(C), pages 335-345.
    3. Robles-Iglesias, Raúl & Naveira-Pazos, Cecilia & Fernández-Blanco, Carla & Veiga, María C. & Kennes, Christian, 2023. "Factors affecting the optimisation and scale-up of lipid accumulation in oleaginous yeasts for sustainable biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Mohanan, Athira & Darling, Bruce & Bouzidi, Laziz & Narine, Suresh S., 2015. "Mitigating crystallization of saturated FAMES (fatty acid methyl esters) in biodiesel. 3. The binary phase behavior of 1,3-dioleoyl-2-palmitoyl glycerol – Methyl palmitate – A multi-length scale struc," Energy, Elsevier, vol. 86(C), pages 500-513.
    5. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    6. Mohanan, Athira & Bouzidi, Laziz & Narine, Suresh S., 2016. "Mitigating crystallization of saturated FAMEs in biodiesel 6: The binary phase behavior of 1, 2-dioleoyl-3-stearoyl sn-glycerol – Methyl stearate," Energy, Elsevier, vol. 100(C), pages 273-284.
    7. Varatharajan, K. & Cheralathan, M., 2012. "Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3702-3710.
    8. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    9. Mat Yasin, M.H. & Yusaf, Talal & Mamat, R. & Fitri Yusop, A., 2014. "Characterization of a diesel engine operating with a small proportion of methanol as a fuel additive in biodiesel blend," Applied Energy, Elsevier, vol. 114(C), pages 865-873.
    10. Obed M. Ali & Talal Yusaf & Rizalman Mamat & Nik R. Abdullah & Abdul Adam Abdullah, 2014. "Influence of Chemical Blends on Palm Oil Methyl Esters’ Cold Flow Properties and Fuel Characteristics," Energies, MDPI, vol. 7(7), pages 1-17, July.
    11. Ali, Obed M. & Mamat, Rizalman & Abdullah, Nik R. & Abdullah, Abdul Adam, 2016. "Analysis of blended fuel properties and engine performance with palm biodiesel–diesel blended fuel," Renewable Energy, Elsevier, vol. 86(C), pages 59-67.
    12. Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.
    13. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    14. Lanjekar, R.D. & Deshmukh, D., 2016. "A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1401-1411.
    15. Suh, Hyun Kyu & Lee, Chang Sik, 2016. "A review on atomization and exhaust emissions of a biodiesel-fueled compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1601-1620.
    16. Misra, R.D. & Murthy, M.S., 2011. "Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2413-2422, June.
    17. Mohanan, Athira & Bouzidi, Laziz & Li, Shaojun & Narine, Suresh S., 2015. "Mitigating crystallization of saturated FAMES in biodiesel: 5. The unusual phase behavior of a structured triacylglycerol dimer and methyl palmitate binary system," Energy, Elsevier, vol. 93(P1), pages 1011-1021.
    18. Sharma, Vikas & Duraisamy, Ganesh & Arumugum, Kanagaraj, 2020. "Impact of bio-mix fuel on performance, emission and combustion characteristics in a single cylinder DICI VCR engine," Renewable Energy, Elsevier, vol. 146(C), pages 111-124.
    19. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    20. Marianela Cobos & Jae D. Paredes & J. Dylan Maddox & Gabriel Vargas-Arana & Leenin Flores & Carla P. Aguilar & Jorge L. Marapara & Juan C. Castro, 2017. "Isolation and Characterization of Native Microalgae from the Peruvian Amazon with Potential for Biodiesel Production," Energies, MDPI, vol. 10(2), pages 1-16, February.
    21. Sáez-Bastante, J. & Carmona-Cabello, M. & Pinzi, S. & Dorado, M.P., 2020. "Recycling of kebab restoration grease for bioenergy production through acoustic cavitation," Renewable Energy, Elsevier, vol. 155(C), pages 1147-1155.
    22. Wang, Meng & Nie, Kaili & Yun, Feng & Cao, Hao & Deng, Li & Wang, Fang & Tan, Tianwei, 2015. "Biodiesel with low temperature properties: Enzymatic synthesis of fusel alcohol fatty acid ester in a solvent free system," Renewable Energy, Elsevier, vol. 83(C), pages 1020-1025.
    23. Serrano, Marta & Oliveros, Rubén & Sánchez, Marcos & Moraschini, Andrea & Martínez, Mercedes & Aracil, José, 2014. "Influence of blending vegetable oil methyl esters on biodiesel fuel properties: Oxidative stability and cold flow properties," Energy, Elsevier, vol. 65(C), pages 109-115.
    24. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szulczyk, Kenneth R. & McCarl, Bruce A. & Cornforth, Gerald, 2010. "Market penetration of ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 394-403, January.
    2. Brockmeier, Martina & Urban, Kirsten, 2008. "Assessing the Impacts of Agricultural Policies on the Global, National and Farm level - A Survey of Model Systems," Conference papers 331684, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.
    4. Wassell, Charles Jr. & Dittmer, Timothy P., 2006. "Are subsidies for biodiesel economically efficient?," Energy Policy, Elsevier, vol. 34(18), pages 3993-4001, December.
    5. Juan Manuel Domínguez, 2015. "An Analysis of the Technological Structure of Refineries and Blenders: Estimation of the Leontief Multiproduct Cost Function and Reservation Prices," Revista Equidad y Desarrollo, Universidad de la Salle, May.
    6. Szulczyk, Kenneth R. & McCarl, Bruce A., 2010. "Market penetration of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2426-2433, October.
    7. Juan Manuel Dominguez Andrade, 2012. "El Mercado Bio-combustible : Escenarios hipotéticos," Revista de Economía del Caribe 10280, Universidad del Norte.
    8. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    9. Lanjekar, R.D. & Deshmukh, D., 2016. "A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1401-1411.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:6:p:1145-1151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.