IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v144y2019icp153-158.html
   My bibliography  Save this article

Bio-crude oil production from a new genotype of Miscanthus sacchariflorus Geodae-Uksae 1

Author

Listed:
  • Choi, Sang Kyu
  • Choi, Yeon Seok
  • Han, So Young
  • Kim, Seock Joon
  • Rahman, Tawsif
  • Jeong, Yeon Woo
  • Van Nguyen, Quynh
  • Cha, Young Rok

Abstract

A new genotype of Miscanthus sacchariflorus Geodae-Uksae 1, which was recently collected from damp land in South Korea, was pyrolyzed in a bubbling fluidized bed reactor for bio-crude oil production. Comparing to woody biomass this has a remarkably economic advantage of very low water content, because it is collected after naturally dried in autumn. This biomass was ground and sieved to acquire the fine size less than 1 mm and fed into the reactor with feeding rate of 200 g/hr continuously. Four reactor temperatures, 400, 450, 500, and 550 °C were set to investigate the optimal temperature for highest bio-crude oil yield and quality. Proximate and ultimate analyses were done for both biomass and bio-crude oil to scrutinize the property change during the fast pyrolysis. Experimental results showed that the maximum bio-crude oil yield was obtained to be 51.88 wt% at the pyrolysis temperature of 500 °C. The maximum higher heating value (HHV) of bio-crude oil was determined to be 15.88 MJ/kg at 400 °C, which was similar to the original biomass. At the pyrolysis temperature of 400 °C, the moisture content of bio-crude oil was 19.46 wt% which was increased by 8.61 wt% than the original biomass. Overall fuel properties of miscanthus sacchariflorus Gedae-Uksae 1 was thought to be similar to the general woody bio-crude oil.

Suggested Citation

  • Choi, Sang Kyu & Choi, Yeon Seok & Han, So Young & Kim, Seock Joon & Rahman, Tawsif & Jeong, Yeon Woo & Van Nguyen, Quynh & Cha, Young Rok, 2019. "Bio-crude oil production from a new genotype of Miscanthus sacchariflorus Geodae-Uksae 1," Renewable Energy, Elsevier, vol. 144(C), pages 153-158.
  • Handle: RePEc:eee:renene:v:144:y:2019:i:c:p:153-158
    DOI: 10.1016/j.renene.2018.07.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118308401
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stamatov, V. & Honnery, D. & Soria, J., 2006. "Combustion properties of slow pyrolysis bio-oil produced from indigenous Australian species," Renewable Energy, Elsevier, vol. 31(13), pages 2108-2121.
    2. Nurul Islam, Mohammad & Zailani, Ramlan & Nasir Ani, Farid, 1999. "Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and itscharacterisation," Renewable Energy, Elsevier, vol. 17(1), pages 73-84.
    3. Jin, Sung Ho & Lee, Hyung Won & Ryu, Changkook & Jeon, Jong-Ki & Park, Young-Kwon, 2015. "Catalytic fast pyrolysis of Geodae-Uksae 1 over zeolites," Energy, Elsevier, vol. 81(C), pages 41-46.
    4. Bok, Jin Pil & Choi, Hang Seok & Choi, Joon Weon & Choi, Yeon Seok, 2013. "Fast pyrolysis of Miscanthus sinensis in fluidized bed reactors: Characteristics of product yields and biocrude oil quality," Energy, Elsevier, vol. 60(C), pages 44-52.
    5. Pütün, Ayşe E. & Apaydın, Esin & Pütün, Ersan, 2004. "Rice straw as a bio-oil source via pyrolysis and steam pyrolysis," Energy, Elsevier, vol. 29(12), pages 2171-2180.
    6. Bok, Jin Pil & Choi, Hang Seok & Choi, Yeon Seok & Park, Hoon Chae & Kim, Seock Joon, 2012. "Fast pyrolysis of coffee grounds: Characteristics of product yields and biocrude oil quality," Energy, Elsevier, vol. 47(1), pages 17-24.
    7. Choi, Sang Kyu & Choi, Yeon Seok & Kim, Seock Joon & Jeong, Yeon Woo, 2016. "Characteristics of flame stability and gaseous emission of biocrude-oil/ethanol blends in a pilot-scale spray burner," Renewable Energy, Elsevier, vol. 91(C), pages 516-523.
    8. Jeong, Yeon Woo & Choi, Sang Kyu & Choi, Yeon Seok & Kim, Seock Joon, 2015. "Production of biocrude-oil from swine manure by fast pyrolysis and analysis of its characteristics," Renewable Energy, Elsevier, vol. 79(C), pages 14-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sang Kyu Choi & Yeon Seok Choi & Yeon Woo Jeong & So Young Han & Quynh Van Nguyen, 2020. "Characteristics of Flame Stability and Gaseous Emission of Bio-Crude Oil from Coffee Ground in a Pilot-Scale Spray Burner," Energies, MDPI, vol. 13(11), pages 1-12, June.
    2. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    3. Wang, Wei-Cheng & Jan, Jyun-Jhih, 2018. "From laboratory to pilot: Design concept and techno-economic analyses of the fluidized bed fast pyrolysis of biomass," Energy, Elsevier, vol. 155(C), pages 139-151.
    4. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    5. Bok, Jin Pil & Choi, Hang Seok & Choi, Joon Weon & Choi, Yeon Seok, 2013. "Fast pyrolysis of Miscanthus sinensis in fluidized bed reactors: Characteristics of product yields and biocrude oil quality," Energy, Elsevier, vol. 60(C), pages 44-52.
    6. Leng, Erwei & He, Ben & Chen, Jingwei & Liao, Gaoliang & Ma, Yinjie & Zhang, Feng & Liu, Shuai & E, Jiaqiang, 2021. "Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning," Energy, Elsevier, vol. 236(C).
    7. Heena Panchasara & Nanjappa Ashwath, 2021. "Effects of Pyrolysis Bio-Oils on Fuel Atomisation—A Review," Energies, MDPI, vol. 14(4), pages 1-22, February.
    8. Kim, Jae-Young & Oh, Shinyoung & Hwang, Hyewon & Moon, Youn-Ho & Choi, Joon Weon, 2014. "Assessment of miscanthus biomass (Miscanthus sacchariflorus) for conversion and utilization of bio-oil by fluidized bed type fast pyrolysis," Energy, Elsevier, vol. 76(C), pages 284-291.
    9. Lehto, Jani & Oasmaa, Anja & Solantausta, Yrjö & Kytö, Matti & Chiaramonti, David, 2014. "Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass," Applied Energy, Elsevier, vol. 116(C), pages 178-190.
    10. Sulaiman, F. & Abdullah, N., 2011. "Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches," Energy, Elsevier, vol. 36(5), pages 2352-2359.
    11. Oh, Shinyoung & Kim, Ung-Jin & Choi, In-Gyu & Choi, Joon Weon, 2016. "Solvent effects on improvement of fuel properties during hydrodeoxygenation process of bio-oil in the presence of Pt/C," Energy, Elsevier, vol. 113(C), pages 116-123.
    12. Sang Kyu Choi & Yeon Seok Choi & Yeon Woo Jeong & So Young Han & Quynh Van Nguyen, 2020. "Simulation of the Fast Pyrolysis of Coffee Ground in a Tilted-Slide Reactor," Energies, MDPI, vol. 13(24), pages 1-19, December.
    13. Jin, Sung Ho & Lee, Hyung Won & Ryu, Changkook & Jeon, Jong-Ki & Park, Young-Kwon, 2015. "Catalytic fast pyrolysis of Geodae-Uksae 1 over zeolites," Energy, Elsevier, vol. 81(C), pages 41-46.
    14. Poddar, Sourav & Sarat Chandra Babu, J., 2021. "Modelling and optimization of a pyrolysis plant using swine and goat manure as feedstock," Renewable Energy, Elsevier, vol. 175(C), pages 253-269.
    15. Granada, Enrique & Míguez, J.L. & Febrero, Lara & Collazo, Joaquín & Eguía, Pablo, 2013. "Development of an experimental technique for oil recovery during biomass pyrolysis," Renewable Energy, Elsevier, vol. 60(C), pages 179-184.
    16. Choi, Sang Kyu & Choi, Yeon Seok & Kim, Seock Joon & Jeong, Yeon Woo, 2016. "Characteristics of flame stability and gaseous emission of biocrude-oil/ethanol blends in a pilot-scale spray burner," Renewable Energy, Elsevier, vol. 91(C), pages 516-523.
    17. Yang, S.I. & Wu, M.S. & Hsu, T.C., 2017. "Experimental and numerical simulation study of oxycombustion of fast pyrolysis bio-oil from lignocellulosic biomass," Energy, Elsevier, vol. 126(C), pages 854-867.
    18. Biswas, Bijoy & Singh, Rawel & Kumar, Jitendra & Singh, Raghuvir & Gupta, Piyush & Krishna, Bhavya B. & Bhaskar, Thallada, 2018. "Pyrolysis behavior of rice straw under carbon dioxide for production of bio-oil," Renewable Energy, Elsevier, vol. 129(PB), pages 686-694.
    19. Yuan, X.Z. & Li, H. & Zeng, G.M. & Tong, J.Y. & Xie, W., 2007. "Sub- and supercritical liquefaction of rice straw in the presence of ethanol–water and 2-propanol–water mixture," Energy, Elsevier, vol. 32(11), pages 2081-2088.
    20. Zahra Echresh Zadeh & Ali Abdulkhani & Basudeb Saha, 2020. "Characterization of Fast Pyrolysis Bio-Oil from Hardwood and Softwood Lignin," Energies, MDPI, vol. 13(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:144:y:2019:i:c:p:153-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.