IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v186y2022icp420-430.html
   My bibliography  Save this article

Seasonal prediction of renewable energy generation in Europe based on four teleconnection indices

Author

Listed:
  • Lledó, Llorenç
  • Ramon, Jaume
  • Soret, Albert
  • Doblas-Reyes, Francisco-Javier

Abstract

With growing amounts of wind and solar power in the electricity mix of many European countries, understanding and predicting variations of renewable energy generation at multiple timescales is crucial to ensure reliable electricity systems. At seasonal scale, the balance between supply and demand is mostly determined by the large-scale atmospheric circulation, which is uncertain due to climate change and natural variability. Here we employ four teleconnection indices, which represent a linkage between atmospheric conditions at widely separated regions, to describe the large-scale circulation at seasonal scale over Europe. For the first time, we relate each of the teleconnections to the wind and solar generation anomalies at country and regional level and we show that dynamical forecasts of the teleconnection indices allow predicting renewable generation at country level with positive skill levels. This model unveils the co-variability of wind and solar generation in European countries through its common dependence on the general circulation and the state of the teleconnections.

Suggested Citation

  • Lledó, Llorenç & Ramon, Jaume & Soret, Albert & Doblas-Reyes, Francisco-Javier, 2022. "Seasonal prediction of renewable energy generation in Europe based on four teleconnection indices," Renewable Energy, Elsevier, vol. 186(C), pages 420-430.
  • Handle: RePEc:eee:renene:v:186:y:2022:i:c:p:420-430
    DOI: 10.1016/j.renene.2021.12.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121018607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.12.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hirth, Lion & Mühlenpfordt, Jonathan & Bulkeley, Marisa, 2018. "The ENTSO-E Transparency Platform – A review of Europe’s most ambitious electricity data platform," Applied Energy, Elsevier, vol. 225(C), pages 1054-1067.
    2. Francisco J. Doblas‐Reyes & Javier García‐Serrano & Fabian Lienert & Aida Pintó Biescas & Luis R. L. Rodrigues, 2013. "Seasonal climate predictability and forecasting: status and prospects," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 4(4), pages 245-268, July.
    3. Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019. "Open Power System Data – Frictionless data for electricity system modelling," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 236, pages 401-409.
    4. Christian M. Grams & Remo Beerli & Stefan Pfenninger & Iain Staffell & Heini Wernli, 2017. "Balancing Europe’s wind-power output through spatial deployment informed by weather regimes," Nature Climate Change, Nature, vol. 7(8), pages 557-562, August.
    5. Brayshaw, David James & Troccoli, Alberto & Fordham, Rachael & Methven, John, 2011. "The impact of large scale atmospheric circulation patterns on wind power generation and its potential predictability: A case study over the UK," Renewable Energy, Elsevier, vol. 36(8), pages 2087-2096.
    6. Anton Orlov & Jana Sillmann & Ilaria Vigo, 2020. "Author Correction: Better seasonal forecasts for the renewable energy industry," Nature Energy, Nature, vol. 5(3), pages 271-271, March.
    7. De Felice, Matteo & Soares, Marta Bruno & Alessandri, Andrea & Troccoli, Alberto, 2019. "Scoping the potential usefulness of seasonal climate forecasts for solar power management," Renewable Energy, Elsevier, vol. 142(C), pages 215-223.
    8. Eleftheria Exarchou & Pablo Ortega & Belén Rodríguez-Fonseca & Teresa Losada & Irene Polo & Chloé Prodhomme, 2021. "Impact of equatorial Atlantic variability on ENSO predictive skill," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Moraes, L. & Bussar, C. & Stoecker, P. & Jacqué, Kevin & Chang, Mokhi & Sauer, D.U., 2018. "Comparison of long-term wind and photovoltaic power capacity factor datasets with open-license," Applied Energy, Elsevier, vol. 225(C), pages 209-220.
    10. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    11. Alonzo, Bastien & Tankov, Peter & Drobinski, Philippe & Plougonven, Riwal, 2020. "Probabilistic wind forecasting up to three months ahead using ensemble predictions for geopotential height," International Journal of Forecasting, Elsevier, vol. 36(2), pages 515-530.
    12. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    13. Lledó, Ll. & Torralba, V. & Soret, A. & Ramon, J. & Doblas-Reyes, F.J., 2019. "Seasonal forecasts of wind power generation," Renewable Energy, Elsevier, vol. 143(C), pages 91-100.
    14. Anton Orlov & Jana Sillmann & Ilaria Vigo, 2020. "Better seasonal forecasts for the renewable energy industry," Nature Energy, Nature, vol. 5(2), pages 108-110, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    2. Weijie Zhou & Huimin Jiang & Jiaxin Chang, 2023. "Forecasting Renewable Energy Generation Based on a Novel Dynamic Accumulation Grey Seasonal Model," Sustainability, MDPI, vol. 15(16), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    3. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    5. Shirizadeh, Behrang & Quirion, Philippe, 2021. "Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?," Energy Economics, Elsevier, vol. 95(C).
    6. Zech, Matthias & von Bremen, Lueder, 2024. "End-to-end learning of representative PV capacity factors from aggregated PV feed-ins," Applied Energy, Elsevier, vol. 361(C).
    7. Gabrielli, Paolo & Aboutalebi, Reyhaneh & Sansavini, Giovanni, 2022. "Mitigating financial risk of corporate power purchase agreements via portfolio optimization," Energy Economics, Elsevier, vol. 109(C).
    8. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    9. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," Energy Policy, Elsevier, vol. 152(C).
    10. Seljom, Pernille & Kvalbein, Lisa & Hellemo, Lars & Kaut, Michal & Ortiz, Miguel Muñoz, 2021. "Stochastic modelling of variable renewables in long-term energy models: Dataset, scenario generation & quality of results," Energy, Elsevier, vol. 236(C).
    11. Behrang Shirizadeh, 2020. "Carbon-neutral future with sector-coupling; relative role of different mitigation options in energy sector," Working Papers 2020.19, FAERE - French Association of Environmental and Resource Economists.
    12. Fabian Stöckl & Alexander Zerrahn, 2023. "Substituting Clean for Dirty Energy: A Bottom-Up Analysis," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(3), pages 819-863.
    13. López Prol, Javier & de Llano Paz, Fernando & Calvo-Silvosa, Anxo & Pfenninger, Stefan & Staffell, Iain, 2024. "Wind-solar technological, spatial and temporal complementarities in Europe: A portfolio approach," Energy, Elsevier, vol. 292(C).
    14. Muñoz Ortiz, Miguel & Kvalbein, Lisa & Hellemo, Lars, 2021. "Evaluation of open photovoltaic and wind production time series for Norwegian locations," Energy, Elsevier, vol. 236(C).
    15. Radu, David & Berger, Mathias & Dubois, Antoine & Fonteneau, Raphaël & Pandžić, Hrvoje & Dvorkin, Yury & Louveaux, Quentin & Ernst, Damien, 2022. "Assessing the impact of offshore wind siting strategies on the design of the European power system," Applied Energy, Elsevier, vol. 305(C).
    16. Héctor Marañón-Ledesma & Asgeir Tomasgard, 2019. "Analyzing Demand Response in a Dynamic Capacity Expansion Model for the European Power Market," Energies, MDPI, vol. 12(15), pages 1-24, August.
    17. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    18. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    19. Prasad, Abhnil Amtesh & Yang, Yuqing & Kay, Merlinde & Menictas, Chris & Bremner, Stephen, 2021. "Synergy of solar photovoltaics-wind-battery systems in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Bianchi, Emilio & Guozden, Tomás & Kozulj, Roberto, 2022. "Assessing low frequency variations in solar and wind power and their climatic teleconnections," Renewable Energy, Elsevier, vol. 190(C), pages 560-571.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:186:y:2022:i:c:p:420-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.