IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1631-d1059842.html
   My bibliography  Save this article

A Voltage Doubler Boost Converter Circuit for Piezoelectric Energy Harvesting Systems

Author

Listed:
  • Abdul Haseeb

    (Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW 2480, Australia)

  • Mahesh Edla

    (Department of Research and Development, Electronics Engineer, MYRA Corporate, Wollongbar Industrial Area, Alstonville, NSW 2477, Australia)

  • Mustafa Ucgul

    (Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW 2480, Australia)

  • Fendy Santoso

    (Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW 2480, Australia)

  • Mikio Deguchi

    (Department of Electronics and Control Engineering, National Institute of Technology, Niihama College, Niihama 790-8570, Japan)

Abstract

This paper describes the detailed modelling of a vibration-based miniature piezoelectric device (PD) and the analysis modes of operation and control of a voltage doubler boost converter (VDBC) circuit to find the PD’s optimal operating conditions. The proposed VDBC circuit integrates a conventional voltage doubler (VD) circuit with a step-up DC-DC converter circuit in modes 1–4, while a non-linear synchronisation procedure of a conventional boost converter circuit is employed in modes 5–6. This integration acted as the voltage boost circuit without utilising duty cycles and complex auxiliary switching components. In addition, the circuit does not require external trigger signals to turn on the bidirectional switches. This facilitates the operation of VDBC circuit at very low AC voltage (V ac ≥ 0.5 V). Besides this, the electrical characteristics of VDBC circuit’s input (i.e., PD) perfectly concurs with the studied testing scenarios using impedance power sources (mechanical shaker). Firstly, the proposed circuit which can rectify the PD’s output was tested at both constant input voltage with varying excitation frequency and constant excitation frequency with varying input voltage. Next, a small-scale solar battery was charged to validate the feasibility of the performance of the proposed VDBC circuit. The proposed circuit achieved a maximum output voltage of 11.7 V dc with an output power of 1.37 mW. In addition, the rectified voltage waveform is stable due to the sminimisation of the ripples. In addition, the performance of VDBC circuit was verified by comparing the achieved results with previously published circuits in the literature. The results show that the proposed VDBC circuit outperformed existing units as described in the literature regarding output voltage and power. The developed rectifier circuit is suitable for various real-life applications such as energy harvesting and battery charging.

Suggested Citation

  • Abdul Haseeb & Mahesh Edla & Mustafa Ucgul & Fendy Santoso & Mikio Deguchi, 2023. "A Voltage Doubler Boost Converter Circuit for Piezoelectric Energy Harvesting Systems," Energies, MDPI, vol. 16(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1631-:d:1059842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1631/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1631/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
    2. Teo, J.C. & Tan, Rodney H.G. & Mok, V.H. & Ramachandaramurthy, Vigna K. & Tan, ChiaKwang, 2020. "Impact of bypass diode forward voltage on maximum power of a photovoltaic system under partial shading conditions," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yifei & Xian, Tongrui & Chen, Chen & Wang, Guosen & Wang, Mengdi & Shi, Weijie, 2024. "Mathematical modeling and parameter optimization of a stacked piezoelectric energy harvester based on water pressure pulsation," Energy, Elsevier, vol. 292(C).
    2. Xian, Tongrui & Xu, Yifei & Chen, Chen & Luo, Xiaohui & Zhao, Haixia & Zhang, Yongtao & Shi, Weijie, 2024. "Experimental and theory study on a stacked piezoelectric energy harvester for pressure pulsation in water hydraulic system," Renewable Energy, Elsevier, vol. 225(C).
    3. Firoozzadeh, Mohammad & Shiravi, Amir Hossein & Lotfi, Marzieh & Aidarova, Saule & Sharipova, Altynay, 2021. "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study," Energy, Elsevier, vol. 225(C).
    4. Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
    5. Yu, Gang & He, Lipeng & Wang, Hongxin & Sun, Lei & Zhang, Zhonghua & Cheng, Guangming, 2023. "Research of rotating piezoelectric energy harvester for automotive motion," Renewable Energy, Elsevier, vol. 211(C), pages 484-493.
    6. Mirza, Adeel Feroz & Mansoor, Majad & Zhan, Keyu & Ling, Qiang, 2021. "High-efficiency swarm intelligent maximum power point tracking control techniques for varying temperature and irradiance," Energy, Elsevier, vol. 228(C).
    7. Na, Yonghyeon & Lee, Min-Seon & Lee, Jung Woo & Jeong, Young Hun, 2020. "Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure," Applied Energy, Elsevier, vol. 264(C).
    8. Kaiyuan Zhao & Qichang Zhang & Wei Wang, 2019. "Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed," Energies, MDPI, vol. 12(24), pages 1-18, December.
    9. Wang, Jian-Xu & Su, Wen-Bin & Li, Ji-Chao & Wang, Chun-Ming, 2022. "A rotational piezoelectric energy harvester based on trapezoid beam: Simulation and experiment," Renewable Energy, Elsevier, vol. 184(C), pages 619-626.
    10. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    11. Wang, Shuyun & Yang, Zemeng & Kan, Junwu & Chen, Song & Chai, Chaohui & Zhang, Zhonghua, 2021. "Design and characterization of an amplitude-limiting rotational piezoelectric energy harvester excited by a radially dragged magnetic force," Renewable Energy, Elsevier, vol. 177(C), pages 1382-1393.
    12. Zhao, Fuwang & Wang, Zhaokun & Bai, Honglei & Tang, Hui, 2023. "Energy harvesting based on flow-induced vibration of a wavy cylinder coupled with tuned mass damper," Energy, Elsevier, vol. 282(C).
    13. Kazemi, Shahriar & Nili-Ahmadabadi, Mahdi & Tavakoli, Mohammad Reza & Tikani, Reza, 2021. "Energy harvesting from longitudinal and transverse motions of sea waves particles using a new waterproof piezoelectric waves energy harvester," Renewable Energy, Elsevier, vol. 179(C), pages 528-536.
    14. Rosario Carbone & Cosimo Borrello, 2022. "Experimenting with a Battery-Based Mitigation Technique for Coping with Predictable Partial Shading," Energies, MDPI, vol. 15(11), pages 1-18, June.
    15. Hao, Guannan & Dong, Xiangwei & Li, Zengliang, 2021. "A novel piezoelectric structure for harvesting energy from water droplet: Theoretical and experimental studies," Energy, Elsevier, vol. 232(C).
    16. Zou, Hong-Xiang & Li, Meng & Zhao, Lin-Chuan & Gao, Qiu-Hua & Wei, Ke-Xiang & Zuo, Lei & Qian, Feng & Zhang, Wen-Ming, 2021. "A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting," Energy, Elsevier, vol. 217(C).
    17. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    18. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    19. Zhang, Jingwei & Liu, Yongjie & Li, Yuanliang & Chen, Xiang & Ding, Kun & Yan, Jun & Chen, Xihui, 2024. "An I–V characteristic reconstruction-based partial shading diagnosis and quantitative evaluation for photovoltaic strings," Energy, Elsevier, vol. 300(C).
    20. Li, Zhongjie & Zhao, Li & Wang, Junlei & Yang, Zhengbao & Peng, Yan & Xie, Shaorong & Ding, Jiheng, 2023. "Piezoelectric energy harvesting from extremely low-frequency vibrations via gravity induced self-excited resonance," Renewable Energy, Elsevier, vol. 204(C), pages 546-555.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1631-:d:1059842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.