IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v5y2020i3p69-d394012.html
   My bibliography  Save this article

Towing Test Data Set of the Kyushu University Kite System

Author

Listed:
  • Mostafa A. Rushdi

    (Interdisciplinary Graduate School of Engineering Sciences (IGSES - ESST), Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
    Faculty of Engineering and Technology, Future University in Egypt (FUE), 5th Settlement, New Cairo 11835, Egypt)

  • Tarek N. Dief

    (Research Institute for Applied Mechanics (RIAM), Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan)

  • Shigeo Yoshida

    (Research Institute for Applied Mechanics (RIAM), Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan)

  • Roland Schmehl

    (Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands)

Abstract

Kites can be used to harvest wind energy with substantially lower material and environmental footprints and a higher capacity factor than conventional wind turbines. In this paper, we present measurement data from seven individual tow tests with the kite system developed by Kyushu University. This system was designed for 7 kW traction power and comprises an inflatable wing of 6 m 2 surface area with a suspended kite control unit that is towed on a relatively short tether of 0.4 m by a truck driving at constant speed along a straight runway. To produce a controlled relative flow environment, the experiment was conducted only when the background wind speed was negligible. We recorded the time-series of 11 different sensor values acquired on the kite, the control unit and the truck. The measured data can be used to assess the effects of the towing speed, the flight mode and the lengths of the control lines on the tether force.

Suggested Citation

  • Mostafa A. Rushdi & Tarek N. Dief & Shigeo Yoshida & Roland Schmehl, 2020. "Towing Test Data Set of the Kyushu University Kite System," Data, MDPI, vol. 5(3), pages 1-18, August.
  • Handle: RePEc:gam:jdataj:v:5:y:2020:i:3:p:69-:d:394012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/5/3/69/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/5/3/69/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
    2. Mostafa A. Rushdi & Ahmad A. Rushdi & Tarek N. Dief & Amr M. Halawa & Shigeo Yoshida & Roland Schmehl, 2020. "Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning," Energies, MDPI, vol. 13(9), pages 1-23, May.
    3. Bechtle, Philip & Schelbergen, Mark & Schmehl, Roland & Zillmann, Udo & Watson, Simon, 2019. "Airborne wind energy resource analysis," Renewable Energy, Elsevier, vol. 141(C), pages 1103-1116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Mostafa A. Rushdi & Ahmad A. Rushdi & Tarek N. Dief & Amr M. Halawa & Shigeo Yoshida & Roland Schmehl, 2020. "Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning," Energies, MDPI, vol. 13(9), pages 1-23, May.
    3. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    4. André F. C. Pereira & João M. M. Sousa, 2022. "A Review on Crosswind Airborne Wind Energy Systems: Key Factors for a Design Choice," Energies, MDPI, vol. 16(1), pages 1-40, December.
    5. Malz, E.C. & Hedenus, F. & Göransson, L. & Verendel, V. & Gros, S., 2020. "Drag-mode airborne wind energy vs. wind turbines: An analysis of power production, variability and geography," Energy, Elsevier, vol. 193(C).
    6. Bórawski, Piotr & Bełdycka-Bórawska, Aneta & Jankowski, Krzysztof Jóżef & Dubis, Bogdan & Dunn, James W., 2020. "Development of wind energy market in the European Union," Renewable Energy, Elsevier, vol. 161(C), pages 691-700.
    7. Helena Schmidt & Gerdien de Vries & Reint Jan Renes & Roland Schmehl, 2022. "The Social Acceptance of Airborne Wind Energy: A Literature Review," Energies, MDPI, vol. 15(4), pages 1-24, February.
    8. Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Roystan Vijay Castelino & Pankaj Kumar & Yashwant Kashyap & Anabalagan Karthikeyan & Manjunatha Sharma K. & Debabrata Karmakar & Panagiotis Kosmopoulos, 2023. "Exploring the Potential of Kite-Based Wind Power Generation: An Emulation-Based Approach," Energies, MDPI, vol. 16(13), pages 1-22, July.
    10. Johannes Alexander Müller & Mostafa Yasser Mostafa Khalil Elhashash & Volker Gollnick, 2022. "Electrical Launch Catapult and Landing Decelerator for Fixed-Wing Airborne Wind Energy Systems," Energies, MDPI, vol. 15(7), pages 1-19, March.
    11. Jochem De Schutter & Rachel Leuthold & Thilo Bronnenmeyer & Elena Malz & Sebastien Gros & Moritz Diehl, 2023. "AWEbox : An Optimal Control Framework for Single- and Multi-Aircraft Airborne Wind Energy Systems," Energies, MDPI, vol. 16(4), pages 1-32, February.
    12. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    13. Ali Arshad Uppal & Manuel C. R. M. Fernandes & Sérgio Vinha & Fernando A. C. C. Fontes, 2021. "Cascade Control of the Ground Station Module of an Airborne Wind Energy System," Energies, MDPI, vol. 14(24), pages 1-25, December.
    14. Sweder Reuchlin & Rishikesh Joshi & Roland Schmehl, 2023. "Sizing of Hybrid Power Systems for Off-Grid Applications Using Airborne Wind Energy," Energies, MDPI, vol. 16(10), pages 1-15, May.
    15. Trevisi, Filippo & McWilliam, Michael & Gaunaa, Mac, 2021. "Configuration optimization and global sensitivity analysis of Ground-Gen and Fly-Gen Airborne Wind Energy Systems," Renewable Energy, Elsevier, vol. 178(C), pages 385-402.
    16. Luís Tiago Paiva & Fernando A. C. C. Fontes, 2018. "Optimal Control Algorithms with Adaptive Time-Mesh Refinement for Kite Power Systems," Energies, MDPI, vol. 11(3), pages 1-17, February.
    17. Galih Bangga, 2022. "Progress and Outlook in Wind Energy Research," Energies, MDPI, vol. 15(18), pages 1-5, September.
    18. Malz, E.C. & Koenemann, J. & Sieberling, S. & Gros, S., 2019. "A reference model for airborne wind energy systems for optimization and control," Renewable Energy, Elsevier, vol. 140(C), pages 1004-1011.
    19. Iván Castro-Fernández & Ricardo Borobia-Moreno & Rauno Cavallaro & Gonzalo Sánchez-Arriaga, 2021. "Three-Dimensional Unsteady Aerodynamic Analysis of a Rigid-Framed Delta Kite Applied to Airborne Wind Energy," Energies, MDPI, vol. 14(23), pages 1-17, December.
    20. Mahdi Ebrahimi Salari & Joseph Coleman & Daniel Toal, 2018. "Power Control of Direct Interconnection Technique for Airborne Wind Energy Systems," Energies, MDPI, vol. 11(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:5:y:2020:i:3:p:69-:d:394012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.