IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v27y2023i1p272-282.html
   My bibliography  Save this article

Variability in greenhouse gas footprints of the global wind farm fleet

Author

Listed:
  • Louise Christine Dammeier
  • Joyce H. C. Bosmans
  • Mark A. J. Huijbregts

Abstract

While technological characteristics largely determine the greenhouse gas (GHG) emissions during the construction of a wind farm and meteorological circumstances the actual electricity production, a thorough analysis to quantify the GHG footprint variability (in g CO2eq/kWh electricity produced) between wind farms is still lacking at the global scale. Here, we quantified the GHG footprint of 26,821 wind farms located across the globe, combining turbine‐specific technological parameters, life‐cycle inventory data, and location‐ and temporal‐specific meteorological information. These wind farms represent 79% of the 651 global wind (GW) capacity installed in 2019. Our results indicate a median GHG footprint for global wind electricity of 10 g CO2eq/kWh, ranging from 4 to 56 g CO2eq/kWh (2.5th and 97.5th percentiles). Differences in the GHG footprint of wind farms are mainly explained by spatial variability in wind speed, followed by whether the wind farm is located onshore or offshore, the turbine diameter, and the number of turbines in a wind farm. We also provided a metamodel based on these four predictors for users to be able to easily obtain a first indication of GHG footprints of new wind farms considered. Our results can be used to compare the GHG footprint of wind farms to one another and to other sources of electricity in a location‐specific manner.

Suggested Citation

  • Louise Christine Dammeier & Joyce H. C. Bosmans & Mark A. J. Huijbregts, 2023. "Variability in greenhouse gas footprints of the global wind farm fleet," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 272-282, February.
  • Handle: RePEc:bla:inecol:v:27:y:2023:i:1:p:272-282
    DOI: 10.1111/jiec.13325
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13325
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jesuina Chipindula & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Raghava Rao Kommalapati & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    2. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegi, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2019. "Global estimations of wind energy potential considering seasonal air density changes," Energy, Elsevier, vol. 187(C).
    3. Pimm, Andrew J. & Palczewski, Jan & Barbour, Edward R. & Cockerill, Tim T., 2021. "Using electricity storage to reduce greenhouse gas emissions," Applied Energy, Elsevier, vol. 282(PA).
    4. Wagner, Hermann-Josef & Baack, Christoph & Eickelkamp, Timo & Epe, Alexa & Lohmann, Jessica & Troy, Stefanie, 2011. "Life cycle assessment of the offshore wind farm alpha ventus," Energy, Elsevier, vol. 36(5), pages 2459-2464.
    5. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    6. Kabir, Md Ruhul & Rooke, Braden & Dassanayake, G.D. Malinga & Fleck, Brian A., 2012. "Comparative life cycle energy, emission, and economic analysis of 100 kW nameplate wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 133-141.
    7. Jung, Christopher & Schindler, Dirk, 2019. "The role of air density in wind energy assessment – A case study from Germany," Energy, Elsevier, vol. 171(C), pages 385-392.
    8. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2017. "Temporally-explicit and spatially-resolved global onshore wind energy potentials," Energy, Elsevier, vol. 131(C), pages 207-217.
    9. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    10. Schleisner, L, 2000. "Life cycle assessment of a wind farm and related externalities," Renewable Energy, Elsevier, vol. 20(3), pages 279-288.
    11. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    12. Pehnt, Martin & Oeser, Michael & Swider, Derk J., 2008. "Consequential environmental system analysis of expected offshore wind electricity production in Germany," Energy, Elsevier, vol. 33(5), pages 747-759.
    13. Oebels, Kerstin B. & Pacca, Sergio, 2013. "Life cycle assessment of an onshore wind farm located at the northeastern coast of Brazil," Renewable Energy, Elsevier, vol. 53(C), pages 60-70.
    14. Guezuraga, Begoña & Zauner, Rudolf & Pölz, Werner, 2012. "Life cycle assessment of two different 2 MW class wind turbines," Renewable Energy, Elsevier, vol. 37(1), pages 37-44.
    15. Raadal, Hanne Lerche & Vold, Bjørn Ivar & Myhr, Anders & Nygaard, Tor Anders, 2014. "GHG emissions and energy performance of offshore wind power," Renewable Energy, Elsevier, vol. 66(C), pages 314-324.
    16. Sacchi, Romain & Besseau, Romain & Pérez-López, Paula & Blanc, Isabelle, 2019. "Exploring technologically, temporally and geographically-sensitive life cycle inventories for wind turbines: A parameterized model for Denmark," Renewable Energy, Elsevier, vol. 132(C), pages 1238-1250.
    17. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    18. Ethan S. Warner & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 73-92, April.
    19. Weinzettel, Jan & Reenaas, Marte & Solli, Christian & Hertwich, Edgar G., 2009. "Life cycle assessment of a floating offshore wind turbine," Renewable Energy, Elsevier, vol. 34(3), pages 742-747.
    20. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    21. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    22. Mohamed R. Gomaa & Hegazy Rezk & Ramadan J. Mustafa & Mujahed Al-Dhaifallah, 2019. "Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study," Energies, MDPI, vol. 12(17), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mendecka, Barbara & Lombardi, Lidia, 2019. "Life cycle environmental impacts of wind energy technologies: A review of simplified models and harmonization of the results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 462-480.
    2. Kaldellis, J.K. & Apostolou, D., 2017. "Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 108(C), pages 72-84.
    3. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    4. Nurullah Yildiz & Hassan Hemida & Charalampos Baniotopoulos, 2021. "Life Cycle Assessment of a Barge-Type Floating Wind Turbine and Comparison with Other Types of Wind Turbines," Energies, MDPI, vol. 14(18), pages 1-19, September.
    5. Mohamed R. Gomaa & Hegazy Rezk & Ramadan J. Mustafa & Mujahed Al-Dhaifallah, 2019. "Evaluating the Environmental Impacts and Energy Performance of a Wind Farm System Utilizing the Life-Cycle Assessment Method: A Practical Case Study," Energies, MDPI, vol. 12(17), pages 1-25, August.
    6. Li, Qiangfeng & Duan, Huabo & Xie, Minghui & Kang, Peng & Ma, Yi & Zhong, Ruoyu & Gao, Tianming & Zhong, Weiqiong & Wen, Bojie & Bai, Feng & Vuppaladadiyam, Arun K., 2021. "Life cycle assessment and life cycle cost analysis of a 40 MW wind farm with consideration of the infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Summerfield-Ryan, Oliver & Park, Susan, 2023. "The power of wind: The global wind energy industry's successes and failures," Ecological Economics, Elsevier, vol. 210(C).
    8. Shalini Verma & Akshoy Ranjan Paul & Nawshad Haque, 2022. "Selected Environmental Impact Indicators Assessment of Wind Energy in India Using a Life Cycle Assessment," Energies, MDPI, vol. 15(11), pages 1-16, May.
    9. Niklas Andersen & Ola Eriksson & Karl Hillman & Marita Wallhagen, 2016. "Wind Turbines’ End-of-Life: Quantification and Characterisation of Future Waste Materials on a National Level," Energies, MDPI, vol. 9(12), pages 1-24, November.
    10. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    11. Yashuang Feng & Lixiao Zhang, 2023. "The GHG Intensities of Wind Power Plants in China from a Life-Cycle Perspective: The Impacts of Geographical Location, Turbine Technology and Management Level," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    12. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    13. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    15. Nian, Victor & Liu, Yang & Zhong, Sheng, 2019. "Life cycle cost-benefit analysis of offshore wind energy under the climatic conditions in Southeast Asia – Setting the bottom-line for deployment," Applied Energy, Elsevier, vol. 233, pages 1003-1014.
    16. Michaela Gkantou & Carlos Rebelo & Charalampos Baniotopoulos, 2020. "Life Cycle Assessment of Tall Onshore Hybrid Steel Wind Turbine Towers," Energies, MDPI, vol. 13(15), pages 1-21, August.
    17. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.
    18. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    19. Jesuina Chipindula & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Raghava Rao Kommalapati & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    20. Rueda-Bayona, Juan Gabriel & Cabello Eras, Juan Jose & Chaparro, Tatiana R., 2022. "Impacts generated by the materials used in offshore wind technology on Human Health, Natural Environment and Resources," Energy, Elsevier, vol. 261(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:27:y:2023:i:1:p:272-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.