IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v140y2019icp680-691.html
   My bibliography  Save this article

Effect of HVO fuel mixtures on emissions and performance of a passenger car size diesel engine

Author

Listed:
  • Bortel, Ivan
  • Vávra, Jiří
  • Takáts, Michal

Abstract

This study presents the experimental results from comparison of standard diesel fuel, pure hydrotreated vegetable oil (HVO) and a blend consisting of 30% HVO and 70% standard diesel fuel. The renewable fuel called HVO helps to reduce well to wheel emissions of CO2 and suppresses disadvantages of fatty acid methyl ester (FAME). Experiments have been done on a passenger car size single cylinder compression ignition engine equipped with a contemporary common rail injection system. Tested operating modes and procedure were based on a World Harmonized Stationary Cycle (WHSC). Common gaseous emissions, smoke number, opacity, particulate matter (PM) and particle number (PN) were measured. Weighted average of measured quantities per the test and individual modes of the test were analyzed. Results confirm positive or neutral influence of HVO on the most of measured emission components and performance parameters. The decrease in order of tens of percent was observed in case of emissions of CO, THC, PM and opacity. Emissions of NOx and CO2 decreased and power increased in order of percentage. The effect on PN was not consistent.

Suggested Citation

  • Bortel, Ivan & Vávra, Jiří & Takáts, Michal, 2019. "Effect of HVO fuel mixtures on emissions and performance of a passenger car size diesel engine," Renewable Energy, Elsevier, vol. 140(C), pages 680-691.
  • Handle: RePEc:eee:renene:v:140:y:2019:i:c:p:680-691
    DOI: 10.1016/j.renene.2019.03.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119303726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.03.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodríguez-Fernández, José & Lapuerta, Magín & Sánchez-Valdepeñas, Jesús, 2017. "Regeneration of diesel particulate filters: Effect of renewable fuels," Renewable Energy, Elsevier, vol. 104(C), pages 30-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gintaras Valeika & Jonas Matijošius & Olga Orynycz & Alfredas Rimkus & Antoni Świć & Karol Tucki, 2023. "Smoke Formation during Combustion of Biofuel Blends in the Internal Combustion Compression Ignition Engine," Energies, MDPI, vol. 16(9), pages 1-16, April.
    2. Justas Žaglinskis & Alfredas Rimkus, 2023. "Research on the Performance Parameters of a Compression-Ignition Engine Fueled by Blends of Diesel Fuel, Rapeseed Methyl Ester and Hydrotreated Vegetable Oil," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    3. Gintaras Valeika & Jonas Matijošius & Krzysztof Górski & Alfredas Rimkus & Ruslans Smigins, 2021. "A Study of Energy and Environmental Parameters of a Diesel Engine Running on Hydrogenated Vegetable Oil (HVO) with Addition of Biobutanol and Castor Oil," Energies, MDPI, vol. 14(13), pages 1-29, July.
    4. Aleksandras Chlebnikovas & Artūras Kilikevičius & Jaroslaw Selech & Jonas Matijošius & Kristina Kilikevičienė & Darius Vainorius & Giorgio Passerini & Jacek Marcinkiewicz, 2021. "The Numerical Modeling of Gas Movement in a Single Inlet New Generation Multi-Channel Cyclone Separator," Energies, MDPI, vol. 14(23), pages 1-18, December.
    5. Lee, Cho-Yu & Lin, Jhe-Kai & Wang, Wei-Cheng & Chen, Rong-Hong & Lin, Kun-Mo & Saputro, Herman & Cong, Huynh Thanh & Hong, Thong Duc & Tongroon, Manida, 2023. "The production of the hydro-processed renewable diesel (HRD) and its performances from a turbo-charged diesel engine," Energy, Elsevier, vol. 270(C).
    6. Stefano d’Ambrosio & Alessandro Mancarella & Andrea Manelli, 2022. "Utilization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Dual-Loop EGR Diesel Engine: Behavior as a Drop-In Fuel and Potentialities along Calibration Parameter Sweeps," Energies, MDPI, vol. 15(19), pages 1-17, September.
    7. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    8. de Souza, T.A.Z. & Pinto, G.M. & Julio, A.A.V. & Coronado, C.J.R. & Perez-Herrera, R. & Siqueira, B.O.P.S. & da Costa, R.B.R. & Roberts, J.J. & Palacio, J.C.E., 2022. "Biodiesel in South American countries: A review on policies, stages of development and imminent competition with hydrotreated vegetable oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Cuaical Arciniegas, Víctor & Domínguez Cardozo, Sara & Arias, Silvana & Valencia López, Ana María & Botero, María Luisa & Bustamante Londoño, Felipe, 2024. "Engine & vehicle modeling for fuel assessment under local driving conditions," Energy, Elsevier, vol. 304(C).
    10. Alessandro Mancarella & Omar Marello, 2022. "Effect of Coolant Temperature on Performance and Emissions of a Compression Ignition Engine Running on Conventional Diesel and Hydrotreated Vegetable Oil (HVO)," Energies, MDPI, vol. 16(1), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fayad, Mohammed A. & Tsolakis, Athanasios & Martos, Francisco J., 2020. "Influence of alternative fuels on combustion and characteristics of particulate matter morphology in a compression ignition diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 962-969.
    2. Zuo, Qingsong & Xie, Yong & E, Jiaqiang & Zhu, Xinning & Zhang, Bin & Tang, Yuanyou & Zhu, Guohui & Wang, Zhiqi & Zhang, Jianping, 2020. "Effect of different exhaust parameters on NO conversion efficiency enhancement of a dual-carrier catalytic converter in the gasoline engine," Energy, Elsevier, vol. 191(C).
    3. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    4. Jeyaseelan, Thangaraja & Ekambaram, Porpatham & Subramanian, Jayagopal & Shamim, Tariq, 2022. "A comprehensive review on the current trends, challenges and future prospects for sustainable mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. García, Duban & Ramos, Ángel & Rodríguez-Fernández, José & Bustamante, Felipe & Alarcón, Edwin & Lapuerta, Magín, 2020. "Impact of oxyfunctionalized turpentine on emissions from a Euro 6 diesel engine," Energy, Elsevier, vol. 201(C).
    6. Singh, Devendra & Subramanian, K.A. & Garg, MO, 2018. "Comprehensive review of combustion, performance and emissions characteristics of a compression ignition engine fueled with hydroprocessed renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2947-2954.
    7. José Rodríguez-Fernández & Juan José Hernández & Alejandro Calle-Asensio & Ángel Ramos & Javier Barba, 2019. "Selection of Blends of Diesel Fuel and Advanced Biofuels Based on Their Physical and Thermochemical Properties," Energies, MDPI, vol. 12(11), pages 1-13, May.
    8. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    9. Yang, Shichen & Wan, Mingding & Shen, Lizhong & Wang, Zhengjiang & Huang, Fenlian & Ma, Yuting & Xiao, Yuhan, 2024. "Investigation of the impacts of regeneration temperature and methanol substitution rate on the active regeneration of diesel particulate filter in a diesel-methanol dual-fuel engine," Energy, Elsevier, vol. 301(C).
    10. Lapuerta, Magín & Ramos, Ángel & Barba, Javier & Fernández-Rodríguez, David, 2018. "Cold- and warm-temperature emissions assessment of n-butanol blends in a Euro 6 vehicle," Applied Energy, Elsevier, vol. 218(C), pages 173-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:140:y:2019:i:c:p:680-691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.