IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8092-d694344.html
   My bibliography  Save this article

The Numerical Modeling of Gas Movement in a Single Inlet New Generation Multi-Channel Cyclone Separator

Author

Listed:
  • Aleksandras Chlebnikovas

    (Institute of Mechanical Science, Vilnius Gediminas Technical University, J. Basanavičiaus g. 28, LT-03224 Vilnius, Lithuania
    Institute of Environmental Protection, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania)

  • Artūras Kilikevičius

    (Institute of Mechanical Science, Vilnius Gediminas Technical University, J. Basanavičiaus g. 28, LT-03224 Vilnius, Lithuania)

  • Jaroslaw Selech

    (Department of Transport and Civil Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland)

  • Jonas Matijošius

    (Institute of Mechanical Science, Vilnius Gediminas Technical University, J. Basanavičiaus g. 28, LT-03224 Vilnius, Lithuania)

  • Kristina Kilikevičienė

    (Institute of Mechanical Science, Vilnius Gediminas Technical University, J. Basanavičiaus g. 28, LT-03224 Vilnius, Lithuania)

  • Darius Vainorius

    (Institute of Mechanical Science, Vilnius Gediminas Technical University, J. Basanavičiaus g. 28, LT-03224 Vilnius, Lithuania)

  • Giorgio Passerini

    (Department of Industrial Engineering and Mathematical Sciences, Marche Polytechnic University, Via Brecce Bianche, IT-60100 Ancona, Italy)

  • Jacek Marcinkiewicz

    (Department of Transport and Civil Engineering, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland)

Abstract

The work of traditional cyclones is based on the separation of solid particles using only the centrifugal forces. Therefore, they do not demonstrate high gas-cleaning efficiency, particularly in the cases where gas flows are polluted with fine solid particles (about 20 µm in diameter). The key feature of a new-generation multi-channel cyclone separator’s structure is that its symmetrical upgraded curved elements, with openings cut with their plates bent outwards, make channels for the continuous movement of the gas flows from the inflow opening to the central axis. The smoke flue of the vertical gas outflow is located near the cover of the separating chamber. The present work is aimed at studying the applicability of two various viscosity models and their modified versions to simulate aerodynamic processes in an innovative design for a multi-channel cyclone separator with a single inflow, using the computational fluid dynamics. The research results obtained in the numerical simulation are compared to the experimental results obtained using a physical model. The main purpose of this study is to provide information on how the new design for the multi-channel cyclone affects the distribution of gas flow in the cyclone’s channels. The modified viscosity models, k - ε and k - ω , and computational meshes with various levels of detailed elaboration were analyzed. The developed numerical models of a single-inlet multi-channel cyclone separator allow the researchers to describe its advantages and possible methods of improving its new structure. The developed models can be used for simulating the fluid cleaning phenomenon in the improved fourth-channel cyclone separator and to optimize the whole research process.

Suggested Citation

  • Aleksandras Chlebnikovas & Artūras Kilikevičius & Jaroslaw Selech & Jonas Matijošius & Kristina Kilikevičienė & Darius Vainorius & Giorgio Passerini & Jacek Marcinkiewicz, 2021. "The Numerical Modeling of Gas Movement in a Single Inlet New Generation Multi-Channel Cyclone Separator," Energies, MDPI, vol. 14(23), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8092-:d:694344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bortel, Ivan & Vávra, Jiří & Takáts, Michal, 2019. "Effect of HVO fuel mixtures on emissions and performance of a passenger car size diesel engine," Renewable Energy, Elsevier, vol. 140(C), pages 680-691.
    2. Alfredas Rimkus & Justas Žaglinskis & Saulius Stravinskas & Paulius Rapalis & Jonas Matijošius & Ákos Bereczky, 2019. "Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine," Energies, MDPI, vol. 12(15), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Xu & Junlin Xie & Shuxia Mei & Feng He & Runguo Li & Yuhua Deng & Chao Zhang & Xianming Zheng, 2023. "Numerical Simulation of Gas-Solid Two-Phase Heat Transfer in a Kaolin Cyclone Cooling System," Energies, MDPI, vol. 16(9), pages 1-19, April.
    2. Haruhiko Yamasaki & Hiroyuki Wakimoto & Takeshi Kamimura & Kazuhiro Hattori & Petter Nekså & Hiroshi Yamaguchi, 2022. "Visualization and Measurement of Swirling Flow of Dry Ice Particles in Cyclone Separator-Sublimator," Energies, MDPI, vol. 15(11), pages 1-17, June.
    3. Maciej Siedlecki & Natalia Szymlet & Paweł Fuć & Beata Kurc, 2022. "Analysis of the Possibilities of Reduction of Exhaust Emissions from a Farm Tractor by Retrofitting Exhaust Aftertreatment," Energies, MDPI, vol. 15(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano d’Ambrosio & Alessandro Mancarella & Andrea Manelli, 2022. "Utilization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Dual-Loop EGR Diesel Engine: Behavior as a Drop-In Fuel and Potentialities along Calibration Parameter Sweeps," Energies, MDPI, vol. 15(19), pages 1-17, September.
    2. Gintaras Valeika & Jonas Matijošius & Krzysztof Górski & Alfredas Rimkus & Ruslans Smigins, 2021. "A Study of Energy and Environmental Parameters of a Diesel Engine Running on Hydrogenated Vegetable Oil (HVO) with Addition of Biobutanol and Castor Oil," Energies, MDPI, vol. 14(13), pages 1-29, July.
    3. Alessandro Mancarella & Omar Marello, 2022. "Effect of Coolant Temperature on Performance and Emissions of a Compression Ignition Engine Running on Conventional Diesel and Hydrotreated Vegetable Oil (HVO)," Energies, MDPI, vol. 16(1), pages 1-27, December.
    4. Justas Žaglinskis & Alfredas Rimkus, 2023. "Research on the Performance Parameters of a Compression-Ignition Engine Fueled by Blends of Diesel Fuel, Rapeseed Methyl Ester and Hydrotreated Vegetable Oil," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    5. Cuaical Arciniegas, Víctor & Domínguez Cardozo, Sara & Arias, Silvana & Valencia López, Ana María & Botero, María Luisa & Bustamante Londoño, Felipe, 2024. "Engine & vehicle modeling for fuel assessment under local driving conditions," Energy, Elsevier, vol. 304(C).
    6. Yurii Gutarevych & Vasyl Mateichyk & Jonas Matijošius & Alfredas Rimkus & Igor Gritsuk & Oleksander Syrota & Yevheniy Shuba, 2020. "Improving Fuel Economy of Spark Ignition Engines Applying the Combined Method of Power Regulation," Energies, MDPI, vol. 13(5), pages 1-19, March.
    7. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    8. de Souza, T.A.Z. & Pinto, G.M. & Julio, A.A.V. & Coronado, C.J.R. & Perez-Herrera, R. & Siqueira, B.O.P.S. & da Costa, R.B.R. & Roberts, J.J. & Palacio, J.C.E., 2022. "Biodiesel in South American countries: A review on policies, stages of development and imminent competition with hydrotreated vegetable oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Michalina Kamińska & Łukasz Rymaniak & Piotr Lijewski & Natalia Szymlet & Paweł Daszkiewicz & Rafał Grzeszczyk, 2021. "Investigations of Exhaust Emissions from Rail Machinery during Track Maintenance Operations," Energies, MDPI, vol. 14(11), pages 1-12, May.
    10. Jakub Čedík & Martin Pexa & Michal Holúbek & Zdeněk Aleš & Radek Pražan & Peter Kuchar, 2020. "Effect of Diesel Fuel-Coconut Oil-Butanol Blends on Operational Parameters of Diesel Engine," Energies, MDPI, vol. 13(15), pages 1-16, July.
    11. Gintaras Valeika & Jonas Matijošius & Olga Orynycz & Alfredas Rimkus & Antoni Świć & Karol Tucki, 2023. "Smoke Formation during Combustion of Biofuel Blends in the Internal Combustion Compression Ignition Engine," Energies, MDPI, vol. 16(9), pages 1-16, April.
    12. Agnieszka Dudziak & Monika Stoma & Andrzej Kuranc & Jacek Caban, 2021. "Assessment of Social Acceptance for Autonomous Vehicles in Southeastern Poland," Energies, MDPI, vol. 14(18), pages 1-16, September.
    13. Tipanluisa, Luis & Prati, Maria Vittoria & Costagliola, Maria Antonietta, 2024. "Impact of diesel/renewable fuels blend on gaseous and particle emissions of a light-duty vehicle under real driving emissions," Renewable Energy, Elsevier, vol. 230(C).
    14. Dudziak Agnieszka & Caban Jacek, 2021. "Organization of Urban Transport Organization – Presentation of Bicycle System and Bicycle Infrastructure in Lublin," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 12(1), pages 36-45, May.
    15. Jiaying Pan & Yu He & Tao Li & Haiqiao Wei & Lei Wang & Gequn Shu, 2021. "Effect of Temperature Conditions on Flame Evolutions of Turbulent Jet Ignition," Energies, MDPI, vol. 14(8), pages 1-17, April.
    16. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    17. Caban Jacek & Dudziak Agnieszka, 2019. "Development of a City Bike System on the Example of the City of Lublin," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 10(2), pages 11-22, November.
    18. Barbosa, Ian V. & Scapim, Letícia A. & Cavalcante, Raquel M. & Young, André F., 2023. "Industrial production of green diesel in Brazil: Process simulation and economic perspectives," Renewable Energy, Elsevier, vol. 219(P2).
    19. Lee, Cho-Yu & Lin, Jhe-Kai & Wang, Wei-Cheng & Chen, Rong-Hong & Lin, Kun-Mo & Saputro, Herman & Cong, Huynh Thanh & Hong, Thong Duc & Tongroon, Manida, 2023. "The production of the hydro-processed renewable diesel (HRD) and its performances from a turbo-charged diesel engine," Energy, Elsevier, vol. 270(C).
    20. Wojciech Tutak & Arkadiusz Jamrozik & Karol Grab-Rogaliński, 2021. "The Effect of RME-1-Butanol Blends on Combustion, Performance and Emission of a Direct Injection Diesel Engine," Energies, MDPI, vol. 14(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8092-:d:694344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.