Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.02.051
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Demirel, Burak & Scherer, Paul, 2009. "Bio-methanization of energy crops through mono-digestion for continuous production of renewable biogas," Renewable Energy, Elsevier, vol. 34(12), pages 2940-2945.
- Gustavsson, Jenny & Shakeri Yekta, Sepehr & Sundberg, Carina & Karlsson, Anna & Ejlertsson, Jörgen & Skyllberg, Ulf & Svensson, Bo H., 2013. "Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation," Applied Energy, Elsevier, vol. 112(C), pages 473-477.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ó Céileachair, Dónal & O'Shea, Richard & Murphy, Jerry D. & Wall, David M., 2021. "Alternative energy management strategies for large industry in non-gas-grid regions using on-farm biomethane," Applied Energy, Elsevier, vol. 303(C).
- Egwu, Uchenna & Oko, Eni & Ndukwu, Macmanus Chinenye & Sallis, Paul, 2021. "Novel low-cost pre-treatment material for enhancing the methane yield during anaerobic digestion of lignocellulosic biomass feedstocks: Experimental and kinetic study," Renewable Energy, Elsevier, vol. 179(C), pages 584-592.
- Mehta, Neha & Anderson, Aine & Johnston, Christopher R. & Rooney, David W., 2022. "Evaluating the opportunity for utilising anaerobic digestion and pyrolysis of livestock manure and grass silage to decarbonise gas infrastructure: A Northern Ireland case study," Renewable Energy, Elsevier, vol. 196(C), pages 343-357.
- Zhang, Jing & Mao, Chunlan & khan, Aman & Zhao, Shuai & Gao, Tianpeng & Mikhailovna Redina, Margarita & Zhang, Qing & Song, Peizhi & Liu, Pu & Li, Xiangkai, 2022. "Enhanced methane production by using phytoremediated Halogeton glomeratus as substrate via anaerobic digestion," Renewable Energy, Elsevier, vol. 194(C), pages 28-39.
- Navodita Bhatnagar & David Ryan & Richard Murphy & Anne-Marie Enright, 2020. "Trace Element Supplementation and Enzyme Addition to Enhance Biogas Production by Anaerobic Digestion of Chicken Litter," Energies, MDPI, vol. 13(13), pages 1-14, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sohail Khan & Fuzhi Lu & Muhammad Kashif & Peihong Shen, 2021. "Multiple Effects of Different Nickel Concentrations on the Stability of Anaerobic Digestion of Molasses," Sustainability, MDPI, vol. 13(9), pages 1-11, April.
- Yang, Jin & Chen, Bin, 2014. "Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County," Applied Energy, Elsevier, vol. 118(C), pages 173-182.
- González-González, A. & Cuadros, F., 2014. "Optimal and cost-effective industrial biomethanation of tobacco," Renewable Energy, Elsevier, vol. 63(C), pages 280-285.
- Du, Jiliang & Chen, Le & Li, Jianan & Zuo, Ranan & Yang, Xiushan & Chen, Hongzhang & Zhuang, Xinshu & Tian, Shen, 2018. "High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum)," Applied Energy, Elsevier, vol. 215(C), pages 437-443.
- Qin, Yujie & Chen, Linyi & Wang, Tongyu & Ren, Junyi & Cao, Yan & Zhou, Shaoqi, 2019. "Impacts of ferric chloride, ferrous chloride and solid retention time on the methane-producing and physicochemical characterization in high-solids sludge anaerobic digestion," Renewable Energy, Elsevier, vol. 139(C), pages 1290-1298.
- Ortner, Markus & Rachbauer, Lydia & Somitsch, Walter & Fuchs, Werner, 2014. "Can bioavailability of trace nutrients be measured in anaerobic digestion?," Applied Energy, Elsevier, vol. 126(C), pages 190-198.
- Yin, Changkai & Shen, Yanwen & Zhu, Nanwen & Huang, Qiujie & Lou, Ziyang & Yuan, Haiping, 2018. "Anaerobic digestion of waste activated sludge with incineration bottom ash: Enhanced methane production and CO2 sequestration," Applied Energy, Elsevier, vol. 215(C), pages 503-511.
- Kothari, Richa & Tyagi, V.V. & Pathak, Ashish, 2010. "Waste-to-energy: A way from renewable energy sources to sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3164-3170, December.
- Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Agnieszka A. Pilarska & Krzysztof Pilarski & Tomasz Kulupa & Adrianna Kubiak & Agnieszka Wolna-Maruwka & Alicja Niewiadomska & Jacek Dach, 2024. "Additives Improving the Efficiency of Biogas Production as an Alternative Energy Source—A Review," Energies, MDPI, vol. 17(17), pages 1-26, September.
- Sławomir Łazarski & Andrzej Butarewicz & Marcin Cichosz & Urszula Kiełkowska, 2023. "Study on the Effect of Dedicated Microelement Mixture (DMM) on the Kick-Off Phase of the Digester and Stabilization of the Methane Fermentation Process," Energies, MDPI, vol. 16(9), pages 1-21, April.
- Abdelsalam, E. & Samer, M. & Attia, Y.A. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2016. "Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry," Renewable Energy, Elsevier, vol. 87(P1), pages 592-598.
- Voelklein, M.A. & O' Shea, R. & Jacob, A. & Murphy, J.D., 2017. "Role of trace elements in single and two-stage digestion of food waste at high organic loading rates," Energy, Elsevier, vol. 121(C), pages 185-192.
- Bardi, Mohammad Javad & Vinardell, Sergi & Astals, Sergi & Koch, Konrad, 2023. "Opportunities and challenges of micronutrients supplementation and its bioavailability in anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
- Abdelsalam, E. & Samer, M. & Attia, Y.A. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2017. "Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure," Energy, Elsevier, vol. 120(C), pages 842-853.
More about this item
Keywords
Trace elements; Anaerobic digestion; Grass silage; Biogas; 16S;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:138:y:2019:i:c:p:980-986. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.