IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v120y2017icp842-853.html
   My bibliography  Save this article

Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure

Author

Listed:
  • Abdelsalam, E.
  • Samer, M.
  • Attia, Y.A.
  • Abdel-Hadi, M.A.
  • Hassan, H.E.
  • Badr, Y.

Abstract

In this study, nanoparticles (NPs) were hypothesized to enhance the anaerobic process and to accelerate the slurry digestion, which increases the biogas and methane production. The effects of NPs on biogas and methane production were investigated using a specially designed batch anaerobic system. For this purpose, a series of 2 L biodigesters were manufactured and implemented to study the effects of the nanoparticles of Iron (Fe) and Iron Oxide (Fe3O4) with different concentrations on biogas and methane production. The best results of NPs additives were selected based on the statistical analysis (Least Significant Difference using M-Stat) of biogas and methane production, which were 20 mg/L Fe NPs and 20 mg/L Fe3O4 magnetic NPs (p < 0.05). The aforementioned NPs additives delivered the highest biogas and methane yields in comparison with their other concentrations (5, 10 and 20 mg/L), their salt (FeCl3) and the control. Furthermore, the addition of 20 mg/L Fe NPs and 20 mg/L Fe3O4 magnetic NPs significantly increased the biogas volume (p < 0.05) by 1.45 and 1.66 times the biogas volume produced by the control, respectively. Moreover, the aforementioned additives significantly increased the methane volume (p < 0.05) by 1.59 and 1.96 times the methane volume produced by the control, respectively. The highest specific biogas and methane production were attained with 20 mg/L Fe3O4 magnetic NPs, and were 584 ml Biogas g−1 VS and 351.8 ml CH4 g−1 VS, respectively compared with the control which yielded only 352.6 ml Biogas g−1 VS and 179.6 ml CH4 g−1 VS.

Suggested Citation

  • Abdelsalam, E. & Samer, M. & Attia, Y.A. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2017. "Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure," Energy, Elsevier, vol. 120(C), pages 842-853.
  • Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:842-853
    DOI: 10.1016/j.energy.2016.11.137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216317947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gustavsson, Jenny & Shakeri Yekta, Sepehr & Sundberg, Carina & Karlsson, Anna & Ejlertsson, Jörgen & Skyllberg, Ulf & Svensson, Bo H., 2013. "Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation," Applied Energy, Elsevier, vol. 112(C), pages 473-477.
    2. Abdelsalam, E. & Samer, M. & Attia, Y.A. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2016. "Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry," Renewable Energy, Elsevier, vol. 87(P1), pages 592-598.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Vikas & Nabaterega, Resty & Khoei, Shiva & Eskicioglu, Cigdem, 2021. "Insight into interactions between syntrophic bacteria and archaea in anaerobic digestion amended with conductive materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Iliana Dompara & Angeliki Maragkaki & Nikolaos Papastefanakis & Christina Floraki & Dimitra Vernardou & Thrassyvoulos Manios, 2023. "Effects of Different Materials on Biogas Production during Anaerobic Digestion of Food Waste," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    3. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Yazdani, Mohammad & Ebrahimi-Nik, Mohammadali & Heidari, Ava & Abbaspour-Fard, Mohammad Hossein, 2019. "Improvement of biogas production from slaughterhouse wastewater using biosynthesized iron nanoparticles from water treatment sludge," Renewable Energy, Elsevier, vol. 135(C), pages 496-501.
    5. Gómez Camacho, Carlos E. & Romano, Francesco I. & Ruggeri, Bernardo, 2018. "Macro approach analysis of dark biohydrogen production in the presence of zero valent powered Fe°," Energy, Elsevier, vol. 159(C), pages 525-533.
    6. Noonari, A.A. & Mahar, R.B. & Sahito, A.R. & Brohi, K.M., 2019. "Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield," Renewable Energy, Elsevier, vol. 133(C), pages 1046-1054.
    7. Raquel Barrena & Javier Moral-Vico & Xavier Font & Antoni Sánchez, 2022. "Enhancement of Anaerobic Digestion with Nanomaterials: A Mini Review," Energies, MDPI, vol. 15(14), pages 1-11, July.
    8. Grosser, Anna & Grobelak, Anna & Rorat, Agnieszka & Courtois, Pauline & Vandenbulcke, Franck & Lemière, Sébastien & Guyoneaud, Remy & Attard, Eleonore & Celary, Piotr, 2021. "Effects of silver nanoparticles on performance of anaerobic digestion of sewage sludge and associated microbial communities," Renewable Energy, Elsevier, vol. 171(C), pages 1014-1025.
    9. Mohamed A. Hassaan & Ahmed El Nemr & Marwa R. Elkatory & Safaa Ragab & Mohamed A. El-Nemr & Antonio Pantaleo, 2021. "Synthesis, Characterization, and Synergistic Effects of Modified Biochar in Combination with α-Fe 2 O 3 NPs on Biogas Production from Red Algae Pterocladia capillacea," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    10. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    11. Tariq Alkhrissat & Ghada Kassab & Mu’tasim Abdel-Jaber, 2023. "Impact of Iron Oxide Nanoparticles on Anaerobic Co-Digestion of Cow Manure and Sewage Sludge," Energies, MDPI, vol. 16(15), pages 1-17, August.
    12. Ma, Lei & Zhou, Lei & Mbadinga, Serge Maurice & Gu, Ji-Dong & Mu, Bo-Zhong, 2018. "Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters," Energy, Elsevier, vol. 147(C), pages 663-671.
    13. Ghofrani-Isfahani, Parisa & Baniamerian, Hamed & Tsapekos, Panagiotis & Alvarado-Morales, Merlin & Kasama, Takeshi & Shahrokhi, Mohammad & Vossoughi, Manouchehr & Angelidaki, Irini, 2020. "Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate," Energy, Elsevier, vol. 191(C).
    14. Gloria Amo-Duodu & Emmanuel Kweinor Tetteh & Sudesh Rathilal & Martha Noro Chollom, 2022. "Assessment of Magnetic Nanomaterials for Municipality Wastewater Treatment Using Biochemical Methane Potential (BMP) Tests," IJERPH, MDPI, vol. 19(16), pages 1-10, August.
    15. M. Samer & E. M. Abdelsalam & S. Mohamed & H. Elsayed & Y. Attia, 2022. "Impact of photoactivated cobalt oxide nanoparticles addition on manure and whey for biogas production through dry anaerobic co-digestion," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7776-7793, June.
    16. Cerrillo, Míriam & Burgos, Laura & Ruiz, Beatriz & Barrena, Raquel & Moral-Vico, Javier & Font, Xavier & Sánchez, Antoni & Bonmatí, August, 2021. "In-situ methane enrichment in continuous anaerobic digestion of pig slurry by zero-valent iron nanoparticles addition under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 180(C), pages 372-382.
    17. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    18. M. Samer & O. Hijazi & E. M. Abdelsalam & A. El-Hussein & Y. A. Attia & I. H. Yacoub & H. Bernhardt, 2021. "Life cycle assessment of using laser treatment and nanomaterials to produce biogas through anaerobic digestion of slurry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14683-14696, October.
    19. Hassan, Gamal K. & Abdel-Karim, Ahmed & Al-Shemy, Mona T. & Rojas, Patricia & Sanz, Jose L. & Ismail, Sameh H. & Mohamed, Gehad G. & El-gohary, Fatma A. & Al-sayed, Aly, 2022. "Harnessing Cu@Fe3O4 core shell nanostructure for biogas production from sewage sludge: Experimental study and microbial community shift," Renewable Energy, Elsevier, vol. 188(C), pages 1059-1071.
    20. Zhang, Zengshuai & Guo, Liang & Wang, Yi & Zhao, Yangguo & She, Zonglian & Gao, Mengchun & Guo, Yiding, 2020. "Application of iron oxide (Fe3O4) nanoparticles during the two-stage anaerobic digestion with waste sludge: Impact on the biogas production and the substrate metabolism," Renewable Energy, Elsevier, vol. 146(C), pages 2724-2735.
    21. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
    22. Wei, Jing & Hao, Xiaodi & van Loosdrecht, Mark C.M. & Li, Ji, 2018. "Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 16-26.
    23. Hanxi Wang & Jianling Xu & Lianxi Sheng & Xuejun Liu & Meihan Zong & Difu Yao, 2019. "Anaerobic Digestion Technology for Methane Production Using Deer Manure Under Different Experimental Conditions," Energies, MDPI, vol. 12(9), pages 1-21, May.
    24. Bahare Salehi & Lijun Wang, 2022. "Critical Review on Nanomaterials for Enhancing Bioconversion and Bioremediation of Agricultural Wastes and Wastewater," Energies, MDPI, vol. 15(15), pages 1-21, July.
    25. Abdelsalam, E. & Samer, M. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2018. "Influence of laser irradiation on rumen fluid for biogas production from dairy manure," Energy, Elsevier, vol. 163(C), pages 404-415.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    2. Sohail Khan & Fuzhi Lu & Muhammad Kashif & Peihong Shen, 2021. "Multiple Effects of Different Nickel Concentrations on the Stability of Anaerobic Digestion of Molasses," Sustainability, MDPI, vol. 13(9), pages 1-11, April.
    3. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    4. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    5. Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2022. "Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    6. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
    7. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    8. Kehinde O. Olatunji & Daniel M. Madyira & Jacob O. Amos, 2024. "Sustainable enhancement of biogas and methane yield of macroalgae biomass using different pretreatment techniques: A mini-review," Energy & Environment, , vol. 35(2), pages 1050-1088, March.
    9. Bahare Salehi & Lijun Wang, 2022. "Critical Review on Nanomaterials for Enhancing Bioconversion and Bioremediation of Agricultural Wastes and Wastewater," Energies, MDPI, vol. 15(15), pages 1-21, July.
    10. Yang, Jin & Chen, Bin, 2014. "Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County," Applied Energy, Elsevier, vol. 118(C), pages 173-182.
    11. Tariq Alkhrissat & Ghada Kassab & Mu’tasim Abdel-Jaber, 2023. "Impact of Iron Oxide Nanoparticles on Anaerobic Co-Digestion of Cow Manure and Sewage Sludge," Energies, MDPI, vol. 16(15), pages 1-17, August.
    12. Ghofrani-Isfahani, Parisa & Baniamerian, Hamed & Tsapekos, Panagiotis & Alvarado-Morales, Merlin & Kasama, Takeshi & Shahrokhi, Mohammad & Vossoughi, Manouchehr & Angelidaki, Irini, 2020. "Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate," Energy, Elsevier, vol. 191(C).
    13. Du, Jiliang & Chen, Le & Li, Jianan & Zuo, Ranan & Yang, Xiushan & Chen, Hongzhang & Zhuang, Xinshu & Tian, Shen, 2018. "High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum)," Applied Energy, Elsevier, vol. 215(C), pages 437-443.
    14. Gómez Camacho, Carlos E. & Romano, Francesco I. & Ruggeri, Bernardo, 2018. "Macro approach analysis of dark biohydrogen production in the presence of zero valent powered Fe°," Energy, Elsevier, vol. 159(C), pages 525-533.
    15. Qin, Yujie & Chen, Linyi & Wang, Tongyu & Ren, Junyi & Cao, Yan & Zhou, Shaoqi, 2019. "Impacts of ferric chloride, ferrous chloride and solid retention time on the methane-producing and physicochemical characterization in high-solids sludge anaerobic digestion," Renewable Energy, Elsevier, vol. 139(C), pages 1290-1298.
    16. Ortner, Markus & Rachbauer, Lydia & Somitsch, Walter & Fuchs, Werner, 2014. "Can bioavailability of trace nutrients be measured in anaerobic digestion?," Applied Energy, Elsevier, vol. 126(C), pages 190-198.
    17. Iliana Dompara & Angeliki Maragkaki & Nikolaos Papastefanakis & Christina Floraki & Dimitra Vernardou & Thrassyvoulos Manios, 2023. "Effects of Different Materials on Biogas Production during Anaerobic Digestion of Food Waste," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    18. Yin, Changkai & Shen, Yanwen & Zhu, Nanwen & Huang, Qiujie & Lou, Ziyang & Yuan, Haiping, 2018. "Anaerobic digestion of waste activated sludge with incineration bottom ash: Enhanced methane production and CO2 sequestration," Applied Energy, Elsevier, vol. 215(C), pages 503-511.
    19. Cerrillo, Míriam & Burgos, Laura & Ruiz, Beatriz & Barrena, Raquel & Moral-Vico, Javier & Font, Xavier & Sánchez, Antoni & Bonmatí, August, 2021. "In-situ methane enrichment in continuous anaerobic digestion of pig slurry by zero-valent iron nanoparticles addition under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 180(C), pages 372-382.
    20. FitzGerald, Jamie A. & Wall, David M. & Jackson, Stephen A. & Murphy, Jerry D. & Dobson, Alan D.W., 2019. "Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage," Renewable Energy, Elsevier, vol. 138(C), pages 980-986.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:120:y:2017:i:c:p:842-853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.