IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v303y2021ics0306261921009958.html
   My bibliography  Save this article

Alternative energy management strategies for large industry in non-gas-grid regions using on-farm biomethane

Author

Listed:
  • Ó Céileachair, Dónal
  • O'Shea, Richard
  • Murphy, Jerry D.
  • Wall, David M.

Abstract

A methodology was developed to determine the location and biomethane potential of on-farm biomass feedstocks and furthermore, the quantity of this biomass situated away from an existing gas grid network. The development of decentralised systems which can be integrated with large industry in such locations offers a potential alternative deployment opportunity to centralised gas grid injection. The total biomethane resource from all on-farm feedstocks in a chosen case country (Ireland) was estimated at 67 PJ. Thematic maps were developed to show the quantity of each on-farm feedstock in different regions of Ireland and their distance from the existing gas network. Approximately 17% of the on-farm biomethane resource in Ireland, though in excess of 15 km from the grid, was within a 15 km radius of a large energy user. Two large energy users were presented as case studies, of which their entire heating demand could be met by the on-farm biomethane resource within a 2.5 km radius of each site. Coupling decentralised biomass with large industry users can potentially offer an alternative energy management strategy.

Suggested Citation

  • Ó Céileachair, Dónal & O'Shea, Richard & Murphy, Jerry D. & Wall, David M., 2021. "Alternative energy management strategies for large industry in non-gas-grid regions using on-farm biomethane," Applied Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921009958
    DOI: 10.1016/j.apenergy.2021.117627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921009958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murphy, Jerry D. & Browne, James & Allen, Eoin & Gallagher, Cathal, 2013. "The resource of biomethane, produced via biological, thermal and electrical routes, as a transport biofuel," Renewable Energy, Elsevier, vol. 55(C), pages 474-479.
    2. Lisandra Rocha-Meneses & Jorge A Ferreira & Nemailla Bonturi & Kaja Orupõld & Timo Kikas, 2019. "Enhancing Bioenergy Yields from Sequential Bioethanol and Biomethane Production by Means of Solid–Liquid Separation of the Substrates," Energies, MDPI, vol. 12(19), pages 1-16, September.
    3. Usack, J.G. & Gerber Van Doren, L. & Posmanik, R. & Labatut, R.A. & Tester, J.W. & Angenent, L.T., 2018. "An evaluation of anaerobic co-digestion implementation on New York State dairy farms using an environmental and economic life-cycle framework," Applied Energy, Elsevier, vol. 211(C), pages 28-40.
    4. O'Shea, Richard & Wall, David M. & Kilgallon, Ian & Browne, James D. & Murphy, Jerry D., 2017. "Assessing the total theoretical, and financially viable, resource of biomethane for injection to a natural gas network in a region," Applied Energy, Elsevier, vol. 188(C), pages 237-256.
    5. Allen, Eoin & Wall, David M. & Herrmann, Christiane & Murphy, Jerry D., 2016. "A detailed assessment of resource of biomethane from first, second and third generation substrates," Renewable Energy, Elsevier, vol. 87(P1), pages 656-665.
    6. Abdullah Nsair & Senem Onen Cinar & Ayah Alassali & Hani Abu Qdais & Kerstin Kuchta, 2020. "Operational Parameters of Biogas Plants: A Review and Evaluation Study," Energies, MDPI, vol. 13(15), pages 1-27, July.
    7. FitzGerald, Jamie A. & Wall, David M. & Jackson, Stephen A. & Murphy, Jerry D. & Dobson, Alan D.W., 2019. "Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage," Renewable Energy, Elsevier, vol. 138(C), pages 980-986.
    8. Speirs, Jamie & Balcombe, Paul & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "A greener gas grid: What are the options," Energy Policy, Elsevier, vol. 118(C), pages 291-297.
    9. Harahap, Fumi & Leduc, Sylvain & Mesfun, Sennai & Khatiwada, Dilip & Kraxner, Florian & Silveira, Semida, 2020. "Meeting the bioenergy targets from palm oil based biorefineries: An optimal configuration in Indonesia," Applied Energy, Elsevier, vol. 278(C).
    10. Smyth, Beatrice M. & Murphy, Jerry D. & O'Brien, Catherine M., 2009. "What is the energy balance of grass biomethane in Ireland and other temperate northern European climates?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2349-2360, December.
    11. Gil-Carrera, Laura & Browne, James D. & Kilgallon, Ian & Murphy, Jerry D., 2019. "Feasibility study of an off-grid biomethane mobile solution for agri-waste," Applied Energy, Elsevier, vol. 239(C), pages 471-481.
    12. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    13. Smyth, Beatrice M. & Smyth, Henry & Murphy, Jerry D., 2011. "Determining the regional potential for a grass biomethane industry," Applied Energy, Elsevier, vol. 88(6), pages 2037-2049, June.
    14. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    15. Thamsiriroj, T. & Nizami, A.S. & Murphy, J.D., 2012. "Why does mono-digestion of grass silage fail in long term operation?," Applied Energy, Elsevier, vol. 95(C), pages 64-76.
    16. Long, Aoife & Murphy, Jerry D., 2019. "Can green gas certificates allow for the accurate quantification of the energy supply and sustainability of biomethane from a range of sources for renewable heat and or transport?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehta, Neha & Anderson, Aine & Johnston, Christopher R. & Rooney, David W., 2022. "Evaluating the opportunity for utilising anaerobic digestion and pyrolysis of livestock manure and grass silage to decarbonise gas infrastructure: A Northern Ireland case study," Renewable Energy, Elsevier, vol. 196(C), pages 343-357.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keogh, Niamh & Corr, D. & Monaghan, R.F.D, 2022. "Biogenic renewable gas injection into natural gas grids: A review of technical and economic modelling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Long, Aoife & Murphy, Jerry D., 2019. "Can green gas certificates allow for the accurate quantification of the energy supply and sustainability of biomethane from a range of sources for renewable heat and or transport?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Long, A. & Bose, A. & O'Shea, R. & Monaghan, R. & Murphy, J.D., 2021. "Implications of European Union recast Renewable Energy Directive sustainability criteria for renewable heat and transport: Case study of willow biomethane in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. O'Shea, Richard & Lin, Richen & Wall, David M. & Browne, James D. & Murphy, Jerry D, 2020. "Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery," Applied Energy, Elsevier, vol. 279(C).
    5. O'Shea, Richard & Wall, David M. & Kilgallon, Ian & Browne, James D. & Murphy, Jerry D., 2017. "Assessing the total theoretical, and financially viable, resource of biomethane for injection to a natural gas network in a region," Applied Energy, Elsevier, vol. 188(C), pages 237-256.
    6. Bose, Archishman & O'Shea, Richard & Lin, Richen & Long, Aoife & Rajendran, Karthik & Wall, David & De, Sudipta & Murphy, Jerry D., 2022. "The marginal abatement cost of co-producing biomethane, food and biofertiliser in a circular economy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    8. Gil-Carrera, Laura & Browne, James D. & Kilgallon, Ian & Murphy, Jerry D., 2019. "Feasibility study of an off-grid biomethane mobile solution for agri-waste," Applied Energy, Elsevier, vol. 239(C), pages 471-481.
    9. Keogh, Niamh & Corr, D. & O'Shea, R. & Monaghan, R.F.D., 2022. "The gas grid as a vector for regional decarbonisation - a techno economic case study for biomethane injection and natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 323(C).
    10. Bose, A. & O'Shea, R. & Lin, R. & Long, A. & Rajendran, K. & Wall, D. & De, S. & Murphy, J.D., 2022. "Evaluation of a biomethane, food and biofertiliser polygeneration system in a circular economy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    11. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2022. "What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2019. "The role of life cycle assessment in the sustainable transition to a decarbonised gas network through green gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 16-28.
    13. Rotunno, Paolo & Lanzini, Andrea & Leone, Pierluigi, 2017. "Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel," Renewable Energy, Elsevier, vol. 102(PB), pages 417-432.
    14. O'Shea, R. & Wall, D.M. & Murphy, J.D., 2017. "An energy and greenhouse gas comparison of centralised biogas production with road haulage of pig slurry, and decentralised biogas production with biogas transportation in a low-pressure pipe network," Applied Energy, Elsevier, vol. 208(C), pages 108-122.
    15. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Garcia, Natalia Herrero & Mattioli, Andrea & Gil, Aida & Frison, Nicola & Battista, Federico & Bolzonella, David, 2019. "Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1-10.
    17. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2018. "Evaluation of the potential and geospatial distribution of waste and residues for bio-SNG production: A case study for the Republic of Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 288-301.
    18. Gallagher, Cathal & Murphy, Jerry D., 2013. "What is the realistic potential for biomethane produced through gasification of indigenous Willow or imported wood chip to meet renewable energy heat targets?," Applied Energy, Elsevier, vol. 108(C), pages 158-167.
    19. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.
    20. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921009958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.