IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3763-d1134959.html
   My bibliography  Save this article

Study on the Effect of Dedicated Microelement Mixture (DMM) on the Kick-Off Phase of the Digester and Stabilization of the Methane Fermentation Process

Author

Listed:
  • Sławomir Łazarski

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 45A Wiejska Street, 15-351 Białystok, Poland
    MCMP Sp. z o.o., 5 Świerkowa Street, 86-300 Grudziądz, Poland)

  • Andrzej Butarewicz

    (Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 45A Wiejska Street, 15-351 Białystok, Poland)

  • Marcin Cichosz

    (Department of Chemical Technology, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, 87-100 Toruń, Poland)

  • Urszula Kiełkowska

    (Department of Chemical Technology, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Street, 87-100 Toruń, Poland)

Abstract

The kick-off process is an important aspect of the proper operation of an agricultural biogas plant. At this stage, various operational problems may arise, mainly related to the stabilization of the fermentation process and reaching the full biogas production capacity. This paper presents the results of research on the kick-off of the fermentation process carried out on three selected biogas plants located in Poland. For the experiments, titration, potentiometric, and spectroscopic methods (ICP-MS) were used. The biogas plants during the kick-off period operated on the following substrates: a mixture of cattle and pig manure, corn silage, and whey liquor. Special attention was paid to the dosing process of the formulation developed by the authors (CMP-S1) containing Mo, Co, Ni, Se, and Mn for the fermentation chambers, to which the mixture of the selected microelements was not dosed. The study was carried out under real conditions on an engineering scale. The study showed that supplementing a dedicated mixture of microelements (DMM) in the first days of fermentation chamber kick-off has a positive effect on stabilizing the methane fermentation process and allows a faster and higher loading of fermenters with dry organic matter. The above translates into shortening the time (by more than half) of the kick-off process in the fermentation chamber, as well as brining about a significant reduction in costs.

Suggested Citation

  • Sławomir Łazarski & Andrzej Butarewicz & Marcin Cichosz & Urszula Kiełkowska, 2023. "Study on the Effect of Dedicated Microelement Mixture (DMM) on the Kick-Off Phase of the Digester and Stabilization of the Methane Fermentation Process," Energies, MDPI, vol. 16(9), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3763-:d:1134959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3763/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Calbry-Muzyka, Adelaide & Madi, Hossein & Rüsch-Pfund, Florian & Gandiglio, Marta & Biollaz, Serge, 2022. "Biogas composition from agricultural sources and organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 181(C), pages 1000-1007.
    2. Capa, A. & García, R. & Chen, D. & Rubiera, F. & Pevida, C. & Gil, M.V., 2020. "On the effect of biogas composition on the H2 production by sorption enhanced steam reforming (SESR)," Renewable Energy, Elsevier, vol. 160(C), pages 575-583.
    3. Kowalczyk-Juśko, Alina & Pochwatka, Patrycja & Zaborowicz, Maciej & Czekała, Wojciech & Mazurkiewicz, Jakub & Mazur, Andrzej & Janczak, Damian & Marczuk, Andrzej & Dach, Jacek, 2020. "Energy value estimation of silages for substrate in biogas plants using an artificial neural network," Energy, Elsevier, vol. 202(C).
    4. Gustavsson, Jenny & Shakeri Yekta, Sepehr & Sundberg, Carina & Karlsson, Anna & Ejlertsson, Jörgen & Skyllberg, Ulf & Svensson, Bo H., 2013. "Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation," Applied Energy, Elsevier, vol. 112(C), pages 473-477.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    2. Sohail Khan & Fuzhi Lu & Muhammad Kashif & Peihong Shen, 2021. "Multiple Effects of Different Nickel Concentrations on the Stability of Anaerobic Digestion of Molasses," Sustainability, MDPI, vol. 13(9), pages 1-11, April.
    3. Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).
    4. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Grzegorz Zając & Piotr Banaszuk, 2023. "Common Reed and Maize Silage Co-Digestion as a Pathway towards Sustainable Biogas Production," Energies, MDPI, vol. 16(2), pages 1-25, January.
    5. Park, Min-Ju & Kim, Hak-Min & Gu, Yun-Jeong & Jeong, Dae-Woon, 2023. "Optimization of biogas-reforming conditions considering carbon formation, hydrogen production, and energy efficiencies," Energy, Elsevier, vol. 265(C).
    6. Pochwatka, Patrycja & Rozakis, Stelios & Kowalczyk-Juśko, Alina & Czekała, Wojciech & Qiao, Wei & Nägele, Hans-Joachim & Janczak, Damian & Mazurkiewicz, Jakub & Mazur, Andrzej & Dach, Jacek, 2023. "The energetic and economic analysis of demand-driven biogas plant investment possibility in dairy farm," Energy, Elsevier, vol. 283(C).
    7. Mohammadpour, Hossein & Cord-Ruwisch, Ralf & Pivrikas, Almantas & Ho, Goen, 2022. "Simple energy-efficient electrochemically-driven CO2 scrubbing for biogas upgrading," Renewable Energy, Elsevier, vol. 195(C), pages 274-282.
    8. Bogusława Waliszewska & Mieczysław Grzelak & Eliza Gaweł & Agnieszka Spek-Dźwigała & Agnieszka Sieradzka & Wojciech Czekała, 2021. "Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes," Energies, MDPI, vol. 14(6), pages 1-14, March.
    9. Dang, Chengxiong & Xia, Huanhuan & Yuan, Shuting & Wei, Xingchuan & Cai, Weiquan, 2022. "Green hydrogen production from sorption-enhanced steam reforming of biogas over a Pd/Ni–CaO-mayenite multifunctional catalyst," Renewable Energy, Elsevier, vol. 201(P1), pages 314-322.
    10. Yongping Li & Jiaoning Zhu & Yun Tang & Xiangyuan Shi & Sumera Anwar & Juanling Wang & Li Gao & Jingxuan Zhang, 2023. "Impact of Varying Mass Concentrations of Ammonia Nitrogen on Biogas Production and System Stability of Anaerobic Fermentation," Agriculture, MDPI, vol. 13(8), pages 1-14, August.
    11. Tsipis, E.V. & Agarkov, D.A. & Borisov, Yu.A. & Kiseleva, S.V. & Tarasenko, A.B. & Bredikhin, S.I. & Kharton, V.V., 2023. "Waste gas utilization potential for solid oxide fuel cells: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Andrzej Mazur & Alina Kowalczyk-Juśko, 2021. "The Assessment of the Usefulness of Miscanthus x giganteus to Water and Soil Protection against Erosive Degradation," Resources, MDPI, vol. 10(7), pages 1-18, June.
    13. Alina Kowalczyk-Juśko & Andrzej Mazur & Patrycja Pochwatka & Damian Janczak & Jacek Dach, 2022. "Evaluation of the Effects of Using the Giant Miscanthus ( Miscanthus × Giganteus ) Biomass in Various Energy Conversion Processes," Energies, MDPI, vol. 15(10), pages 1-16, May.
    14. Yang, Jin & Chen, Bin, 2014. "Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County," Applied Energy, Elsevier, vol. 118(C), pages 173-182.
    15. Gandiglio, Marta, 2022. "Design and operation of an industrial size adsorption-based cleaning system for biogas use in fuel cells," Energy, Elsevier, vol. 259(C).
    16. Chaves, Gustavo T. & Teles, Felipe & Balbo, Antonio R. & dos Reis, Célia A. & Florentino, Helenice de Oliveira, 2024. "Mathematical modelling of biodigestion in an Indian biodigester and its stability analysis via Lyapunov technique," Renewable Energy, Elsevier, vol. 226(C).
    17. Georgiadis, Amvrosios G. & Tsiotsias, Anastasios I. & Siakavelas, George I. & Charisiou, Nikolaos D. & Ehrhardt, Benedikt & Wang, Wen & Sebastian, Victor & Hinder, Steven J. & Baker, Mark A. & Mascott, 2024. "An experimental and theoretical approach for the biogas dry reforming reaction using perovskite-derived La0.8X0.2NiO3-δ catalysts (X = Sm, Pr, Ce)," Renewable Energy, Elsevier, vol. 227(C).
    18. Du, Jiliang & Chen, Le & Li, Jianan & Zuo, Ranan & Yang, Xiushan & Chen, Hongzhang & Zhuang, Xinshu & Tian, Shen, 2018. "High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum)," Applied Energy, Elsevier, vol. 215(C), pages 437-443.
    19. Karol Kupryaniuk & Agnieszka Wójtowicz & Jakub Mazurkiewicz & Tomasz Słowik & Arkadiusz Matwijczuk, 2021. "The Influence of the Pressure-Thermal Agglomeration Methods of Corn Bran on Their Selected Physicochemical Properties and Biogas Efficiency," Energies, MDPI, vol. 14(21), pages 1-26, October.
    20. Qin, Yujie & Chen, Linyi & Wang, Tongyu & Ren, Junyi & Cao, Yan & Zhou, Shaoqi, 2019. "Impacts of ferric chloride, ferrous chloride and solid retention time on the methane-producing and physicochemical characterization in high-solids sludge anaerobic digestion," Renewable Energy, Elsevier, vol. 139(C), pages 1290-1298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3763-:d:1134959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.