IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i1p70-d87001.html
   My bibliography  Save this article

Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays

Author

Listed:
  • Louise O’Boyle

    (School of Natural and Built Environment, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT7 1NN, UK)

  • Björn Elsäßer

    (School of Natural and Built Environment, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT7 1NN, UK
    Danish Hydraulic Institute (DHI), Agern Allé 5, Hørsholm DK-2970, Denmark)

  • Trevor Whittaker

    (School of Natural and Built Environment, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT7 1NN, UK)

Abstract

Wave energy converters (WECs) inherently extract energy from incident waves. For wave energy to become a significant power provider in the future, large farms of WECs will be required. This scale of energy extraction will increase the potential for changes in the local wave field and coastal environment. Assessment of these effects is necessary to inform decisions on the layout of wave farms for optimum power output and minimum environmental impact, as well as on potential site selection. An experimental campaign to map, at high resolution, the wave field variation around arrays of 5 oscillating water column WECs and a methodology for extracting scattered and radiated waves is presented. The results highlight the importance of accounting for the full extent of the WEC behavior when assessing impacts on the wave field. The effect of radiated waves on the wave field is not immediately apparent when considering changes to the entire wave spectrum, nor when observing changes in wave climate due to scattered and radiated waves superimposed together. The results show that radiated waves may account for up to 50% of the effects on wave climate in the near field in particular operating conditions.

Suggested Citation

  • Louise O’Boyle & Björn Elsäßer & Trevor Whittaker, 2017. "Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:70-:d:87001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/1/70/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/1/70/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palha, Artur & Mendes, Lourenço & Fortes, Conceição Juana & Brito-Melo, Ana & Sarmento, António, 2010. "The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices," Renewable Energy, Elsevier, vol. 35(1), pages 62-77.
    2. Abanades, J. & Greaves, D. & Iglesias, G., 2015. "Coastal defence using wave farms: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 75(C), pages 572-582.
    3. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    4. Babarit, A., 2013. "On the park effect in arrays of oscillating wave energy converters," Renewable Energy, Elsevier, vol. 58(C), pages 68-78.
    5. John Ashlin, S. & Sundar, V. & Sannasiraj, S.A., 2016. "Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics," Renewable Energy, Elsevier, vol. 96(PA), pages 341-353.
    6. Beels, Charlotte & Troch, Peter & De Visch, Kenneth & Kofoed, Jens Peter & De Backer, Griet, 2010. "Application of the time-dependent mild-slope equations for the simulation of wake effects in the lee of a farm of Wave Dragon wave energy converters," Renewable Energy, Elsevier, vol. 35(8), pages 1644-1661.
    7. Viviano, Antonino & Naty, Stefania & Foti, Enrico & Bruce, Tom & Allsop, William & Vicinanza, Diego, 2016. "Large-scale experiments on the behaviour of a generalised Oscillating Water Column under random waves," Renewable Energy, Elsevier, vol. 99(C), pages 875-887.
    8. Chang, G. & Ruehl, K. & Jones, C.A. & Roberts, J. & Chartrand, C., 2016. "Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions," Renewable Energy, Elsevier, vol. 89(C), pages 636-648.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    2. Diego Vicinanza & Mariano Buccino, 2017. "A Helicopter View of the Special Issue on Wave Energy Converters," Sustainability, MDPI, vol. 9(2), pages 1-4, February.
    3. López-Ruiz, Alejandro & Bergillos, Rafael J. & Lira-Loarca, Andrea & Ortega-Sánchez, Miguel, 2018. "A methodology for the long-term simulation and uncertainty analysis of the operational lifetime performance of wave energy converter arrays," Energy, Elsevier, vol. 153(C), pages 126-135.
    4. Li, Boyang & Li, Canpeng & Zhang, Baoshou & Deng, Fang & Yang, Hualin, 2023. "The effect of the different spacing ratios on wave energy converter of three floating bodies," Energy, Elsevier, vol. 268(C).
    5. Doyle, Simeon & Aggidis, George A., 2021. "Experimental investigation and performance comparison of a 1 single OWC, array and M-OWC," Renewable Energy, Elsevier, vol. 168(C), pages 365-374.
    6. Dezhi Ning & Rongquan Wang & Chongwei Zhang, 2017. "Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter," Sustainability, MDPI, vol. 9(9), pages 1-12, September.
    7. López-Ruiz, Alejandro & Bergillos, Rafael J. & Raffo-Caballero, Juan M. & Ortega-Sánchez, Miguel, 2018. "Towards an optimum design of wave energy converter arrays through an integrated approach of life cycle performance and operational capacity," Applied Energy, Elsevier, vol. 209(C), pages 20-32.
    8. Craig Jones & Grace Chang & Kaustubha Raghukumar & Samuel McWilliams & Ann Dallman & Jesse Roberts, 2018. "Spatial Environmental Assessment Tool (SEAT): A Modeling Tool to Evaluate Potential Environmental Risks Associated with Wave Energy Converter Deployments," Energies, MDPI, vol. 11(8), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stratigaki, Vasiliki & Troch, Peter & Forehand, David, 2019. "A fundamental coupling methodology for modeling near-field and far-field wave effects of floating structures and wave energy devices," Renewable Energy, Elsevier, vol. 143(C), pages 1608-1627.
    2. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
    3. Mayon, Robert & Ning, Dezhi & Zhang, Chongwei & Chen, Lifen & Wang, Rongquan, 2021. "Wave energy capture by an omnidirectional point sink oscillating water column system," Applied Energy, Elsevier, vol. 304(C).
    4. David, Daniel R. & Rijnsdorp, Dirk P. & Hansen, Jeff E. & Lowe, Ryan J. & Buckley, Mark L., 2022. "Predicting coastal impacts by wave farms: A comparison of wave-averaged and wave-resolving models," Renewable Energy, Elsevier, vol. 183(C), pages 764-780.
    5. Aristodemo, Francesco & Algieri Ferraro, Danilo, 2018. "Feasibility of WEC installations for domestic and public electrical supplies: A case study off the Calabrian coast," Renewable Energy, Elsevier, vol. 121(C), pages 261-285.
    6. Shi, Hongda & Zhao, Chenyu & Hann, Martyn & Greaves, Deborah & Han, Zhi & Cao, Feifei, 2019. "WHTO: A methodology of calculating the energy extraction of wave energy convertors based on wave height reduction," Energy, Elsevier, vol. 185(C), pages 299-315.
    7. Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
    8. Correia da Fonseca, F.X. & Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2016. "Model testing of an oscillating water column spar-buoy wave energy converter isolated and in array: Motions and mooring forces," Energy, Elsevier, vol. 112(C), pages 1207-1218.
    9. Craig Jones & Grace Chang & Kaustubha Raghukumar & Samuel McWilliams & Ann Dallman & Jesse Roberts, 2018. "Spatial Environmental Assessment Tool (SEAT): A Modeling Tool to Evaluate Potential Environmental Risks Associated with Wave Energy Converter Deployments," Energies, MDPI, vol. 11(8), pages 1-19, August.
    10. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    11. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    12. Bozzi, Silvia & Giassi, Marianna & Moreno Miquel, Adrià & Antonini, Alessandro & Bizzozero, Federica & Gruosso, Giambattista & Archetti, Renata & Passoni, Giuseppe, 2017. "Wave energy farm design in real wave climates: the Italian offshore," Energy, Elsevier, vol. 122(C), pages 378-389.
    13. Yu Zhou & Chongwei Zhang & Dezhi Ning, 2018. "Hydrodynamic Investigation of a Concentric Cylindrical OWC Wave Energy Converter," Energies, MDPI, vol. 11(4), pages 1-23, April.
    14. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Vasiliki Stratigaki & Peter Troch & Tim Stallard & David Forehand & Jens Peter Kofoed & Matt Folley & Michel Benoit & Aurélien Babarit & Jens Kirkegaard, 2014. "Wave Basin Experiments with Large Wave Energy Converter Arrays to Study Interactions between the Converters and Effects on Other Users in the Sea and the Coastal Area," Energies, MDPI, vol. 7(2), pages 1-34, February.
    16. Ayrton Alfonso Medina Rodríguez & Gregorio Posada Vanegas & Rodolfo Silva Casarín & Edgar Gerardo Mendoza Baldwin & Beatriz Edith Vega Serratos & Felipe Ernesto Puc Cutz & Enrique Alejandro Mangas Che, 2022. "Experimental Investigation of the Hydrodynamic Performance of Land-Fixed Nearshore and Onshore Oscillating Water Column Systems with a Thick Front Wall," Energies, MDPI, vol. 15(7), pages 1-26, March.
    17. Rijnsdorp, Dirk P. & Hansen, Jeff E. & Lowe, Ryan J., 2020. "Understanding coastal impacts by nearshore wave farms using a phase-resolving wave model," Renewable Energy, Elsevier, vol. 150(C), pages 637-648.
    18. Gomes, Rui P.F. & Gato, Luís M.C. & Henriques, João C.C. & Portillo, Juan C.C. & Howey, Ben D. & Collins, Keri M. & Hann, Martyn R. & Greaves, Deborah M., 2020. "Compact floating wave energy converters arrays: Mooring loads and survivability through scale physical modelling," Applied Energy, Elsevier, vol. 280(C).
    19. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    20. Zheng, Siming & Zhang, Yongliang, 2018. "Theoretical modelling of a new hybrid wave energy converter in regular waves," Renewable Energy, Elsevier, vol. 128(PA), pages 125-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:70-:d:87001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.