IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v209y2020ics0360544220315711.html
   My bibliography  Save this article

Hydrodynamic performance of a novel WEC-breakwater integrated system consisting of triple dual-freedom pontoons

Author

Listed:
  • Guo, Baoming
  • Wang, Rongquan
  • Ning, Dezhi
  • Chen, Lifen
  • Sulisz, Wojciech

Abstract

A breakwater consisting of three pontoon-type wave energy converters equipped with Power Take-Off (PTO) systems to extract wave energy from pitch and heave motions is proposed. The proposed integrated system has the potential to reduce the cost of the wave energy conversion system by sharing the essential infrastructure with the floating breakwater. In the model, the eigenfunction expansion matching method and technique of variables separation are used. The effects of the geometrical parameters (including pontoon width, draft and spacing) on the hydrodynamic performance characterized by the wave energy conversion efficiency, transmission and reflection coefficients are investigated, respectively. It is found that the effective bandwidth (transmission coefficient KT < 0.5 and hydrodynamic efficiency Cw > 0.3) and the peak efficiency are enhanced when the pitch and heave motions are considered simultaneously, compared with the single DoF motion system. The effective bandwidth increases with the decrease of width and draft of the front pontoon. And the variation of pontoon spacing affects significantly the distribution of the efficiency due to the Bragg-type reflection. Additionally, it is found that the variation of the geometrical parameters of the front pontoon on wave transmission is limited by changing the geometrical parameters of the front pontoon only.

Suggested Citation

  • Guo, Baoming & Wang, Rongquan & Ning, Dezhi & Chen, Lifen & Sulisz, Wojciech, 2020. "Hydrodynamic performance of a novel WEC-breakwater integrated system consisting of triple dual-freedom pontoons," Energy, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315711
    DOI: 10.1016/j.energy.2020.118463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220315711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    2. Elwood, David & Yim, Solomon C. & Prudell, Joe & Stillinger, Chad & von Jouanne, Annette & Brekken, Ted & Brown, Adam & Paasch, Robert, 2010. "Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off," Renewable Energy, Elsevier, vol. 35(2), pages 348-354.
    3. Malara, Giovanni & Arena, Felice, 2019. "Response of U-Oscillating Water Column arrays: semi-analytical approach and numerical results," Renewable Energy, Elsevier, vol. 138(C), pages 1152-1165.
    4. Muliawan, Made Jaya & Karimirad, Madjid & Moan, Torgeir, 2013. "Dynamic response and power performance of a combined Spar-type floating wind turbine and coaxial floating wave energy converter," Renewable Energy, Elsevier, vol. 50(C), pages 47-57.
    5. He, Fang & Huang, Zhenhua & Law, Adrian Wing-Keung, 2013. "An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction," Applied Energy, Elsevier, vol. 106(C), pages 222-231.
    6. Ning, Dezhi & Zhao, Xuanlie & Göteman, Malin & Kang, Haigui, 2016. "Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study," Renewable Energy, Elsevier, vol. 95(C), pages 531-541.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martić, Ivana & Degiuli, Nastia & Grlj, Carlo Giorgio, 2024. "Scaling of wave energy converters for optimum performance in the Adriatic Sea," Energy, Elsevier, vol. 294(C).
    2. Cheng, Yong & Fu, Lei & Dai, Saishuai & Collu, Maurizio & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Experimental and numerical analysis of a hybrid WEC-breakwater system combining an oscillating water column and an oscillating buoy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Zhou, Binzhen & Zheng, Zhi & Jin, Peng & Wang, Lei & Zang, Jun, 2022. "Wave attenuation and focusing performance of parallel twin parabolic arc floating breakwaters," Energy, Elsevier, vol. 260(C).
    4. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Zhang, Liang, 2020. "Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 257(C).
    2. Kara, Fuat, 2022. "Effects of a vertical wall on wave power absorption with wave energy converters arrays," Renewable Energy, Elsevier, vol. 196(C), pages 812-823.
    3. Zhao, Xuanlie & Ning, Dezhi, 2018. "Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons," Energy, Elsevier, vol. 155(C), pages 226-233.
    4. Xuanlie Zhao & Dezhi Ning & Chongwei Zhang & Haigui Kang, 2017. "Hydrodynamic Investigation of an Oscillating Buoy Wave Energy Converter Integrated into a Pile-Restrained Floating Breakwater," Energies, MDPI, vol. 10(5), pages 1-16, May.
    5. Cheng, Yong & Du, Weiming & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Cocard, Margot & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Hydrodynamic characteristics of a hybrid oscillating water column-oscillating buoy wave energy converter integrated into a π-type floating breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Chen, Qiang & Zang, Jun & Birchall, Jonathan & Ning, Dezhi & Zhao, Xuanlie & Gao, Junliang, 2020. "On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater," Renewable Energy, Elsevier, vol. 146(C), pages 414-425.
    7. Huang, Shijie & Huang, Zhenhua, 2022. "Hydrodynamic performance of a row of closely-spaced bottom-sitting oscillating water columns," Renewable Energy, Elsevier, vol. 195(C), pages 344-356.
    8. Guo, Baoming & Ning, Dezhi & Wang, Rongquan & Ding, Boyin, 2021. "Hydrodynamics of an oscillating water column WEC - Breakwater integrated system with a pitching front-wall," Renewable Energy, Elsevier, vol. 176(C), pages 67-80.
    9. Zhao, Xuanlie & Zhang, Lidong & Li, Mingwei & Johanning, Lars, 2021. "Experimental investigation on the hydrodynamic performance of a multi-chamber OWC-breakwater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Zhang, Hengming & Zhou, Binzhen & Vogel, Christopher & Willden, Richard & Zang, Jun & Geng, Jing, 2020. "Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter," Applied Energy, Elsevier, vol. 259(C).
    11. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    12. Bao, Jian & Yu, Dingyong, 2024. "Hydrodynamic performance optimization of a cost-effective WEC-type floating breakwater with half-airfoil bottom," Renewable Energy, Elsevier, vol. 226(C).
    13. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    14. Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Cocard, Margot & Yuan, Zhiming & Incecik, Atilla, 2021. "Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters," Applied Energy, Elsevier, vol. 292(C).
    15. Cheng, Yong & Li, Gen & Ji, Chunyan & Fan, Tianhui & Zhai, Gangjun, 2020. "Fully nonlinear investigations on performance of an OWSC (oscillating wave surge converter) in 3D (three-dimensional) open water," Energy, Elsevier, vol. 210(C).
    16. Li, Liang & Yuan, Zhiming & Gao, Yan, 2018. "Maximization of energy absorption for a wave energy converter using the deep machine learning," Energy, Elsevier, vol. 165(PA), pages 340-349.
    17. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    18. De Zhi Ning & Xuan Lie Zhao & Li Fen Chen & Ming Zhao, 2018. "Hydrodynamic Performance of an Array of Wave Energy Converters Integrated with a Pontoon-Type Breakwater," Energies, MDPI, vol. 11(3), pages 1-17, March.
    19. Ren, Junqing & Jin, Peng & Liu, Yingyi & Zang, Jun, 2021. "Wave attenuation and focusing by a parabolic arc pontoon breakwater," Energy, Elsevier, vol. 217(C).
    20. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.