IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016300.html
   My bibliography  Save this article

Co-combustion of methane hydrate granules and liquid biofuel

Author

Listed:
  • Antonov, D.V.
  • Dorokhov, V.V.
  • Nagibin, P.S.
  • Shlegel, N.E.
  • Strizhak, P.A.

Abstract

The use of fossil hydrocarbons is accompanied by such problems as the depletion of energy resources and high levels of anthropogenic emissions. One of the options for solving these problems can be the involvement in the fuel sector of composite mixed fuels using gas hydrates and vegetable liquid bio-fuels. In this research we test a hypothesis that gas hydrate with added rapeseed oil will make an energy-efficient and environmentally friendly composite fuel. According to the experimental findings, the co-combustion of gas hydrates and liquid biofuels shows high potential. It shortens the ignition delay by 1.5 times at 700 °C in the combustion chamber and by half at 800 °C compared with the combustion of methane hydrate alone. It also produces 18–32% less carbon monoxide, 12–22% less nitrogen oxides, and 14–33% less sulfur oxides than the direct combustion of rapeseed oil. On the basis of the results obtained, we have developed a predictive mathematical model simulating the heat transfer in a layer of composite fuel. A methane hydrate and rapeseed oil mixing scheme is proposed for combustion chambers. We also provide recommendations on how to use the research findings in a number of energy-related applications.

Suggested Citation

  • Antonov, D.V. & Dorokhov, V.V. & Nagibin, P.S. & Shlegel, N.E. & Strizhak, P.A., 2024. "Co-combustion of methane hydrate granules and liquid biofuel," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016300
    DOI: 10.1016/j.renene.2023.119715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mediavilla, Irene & Barro, Ruth & Borjabad, Elena & Peña, David & Fernández, Miguel J., 2020. "Quality of olive stone as a fuel: Influence of oil content on combustion process," Renewable Energy, Elsevier, vol. 160(C), pages 374-384.
    2. Cui, Gan & Dong, Zengrui & Wang, Shun & Xing, Xiao & Shan, Tianxiang & Li, Zili, 2020. "Effect of the water on the flame characteristics of methane hydrate combustion," Applied Energy, Elsevier, vol. 259(C).
    3. Prakash, T. & Geo, V. Edwin & Martin, Leenus Jesu & Nagalingam, B., 2018. "Effect of ternary blends of bio-ethanol, diesel and castor oil on performance, emission and combustion in a CI engine," Renewable Energy, Elsevier, vol. 122(C), pages 301-309.
    4. Mu, Liang & Tan, Qiqi & Li, Xianlong & Zhang, Qingyun & Cui, Qingyan, 2023. "A novel method to store methane by forming hydrate in the high water-oil ratio emulsions," Energy, Elsevier, vol. 264(C).
    5. Demirbas, Ayhan, 2007. "Importance of biodiesel as transportation fuel," Energy Policy, Elsevier, vol. 35(9), pages 4661-4670, September.
    6. Tainaka, Kazuki & Fan, Yong & Hashimoto, Nozomu & Nishida, Hiroyuki, 2019. "Effects of blending crude Jatropha oil and heavy fuel oil on the soot behavior of a steam atomizing burner," Renewable Energy, Elsevier, vol. 136(C), pages 358-364.
    7. Al Omari, Salah A.B. & Hamdan, Mohammad O. & Selim, Mohamed YE. & Elnajjar, Emad, 2019. "Combustion of jojoba-oil/diesel blends in a small scale furnace," Renewable Energy, Elsevier, vol. 131(C), pages 678-688.
    8. Mohan, Revu Krishn & Sarojini, Jajimoggala & Rajak, Upendra & Verma, Tikendra Nath & Ağbulut, Ümit, 2023. "Alternative fuel production from waste plastics and their usability in light duty diesel engine: Combustion, energy, and environmental analysis," Energy, Elsevier, vol. 265(C).
    9. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    10. Tariq, Rumaisa & Mohd Zaifullizan, Yasmin & Salema, Arshad Adam & Abdulatif, Atiqah & Ken, Loke Shun, 2022. "Co-pyrolysis and co-combustion of orange peel and biomass blends: Kinetics, thermodynamic, and ANN application," Renewable Energy, Elsevier, vol. 198(C), pages 399-414.
    11. Dmitrii V. Antonov & Roman M. Fedorenko & Leonid S. Yanovskiy & Pavel A. Strizhak, 2023. "Physical and Mathematical Models of Micro-Explosions: Achievements and Directions of Improvement," Energies, MDPI, vol. 16(16), pages 1-16, August.
    12. Mahfouz, Ahmed & Moneib, H.A. & El-fatih, Ahmed & El-Sherif, Ashraf F. & Ayoub, H.S. & Emara, Ahmed, 2020. "Comparative study among waste cooking oil blends flame spectroscopy as an alternative fuel through using an industrial burner," Renewable Energy, Elsevier, vol. 159(C), pages 893-907.
    13. Sergey Y. Misyura & Igor G. Donskoy, 2021. "Dissociation and Combustion of a Layer of Methane Hydrate Powder: Ways to Increase the Efficiency of Combustion and Degassing," Energies, MDPI, vol. 14(16), pages 1-16, August.
    14. Asadi, Asgar & Zhang, Yaning & Mohammadi, Hassan & Khorand, Hadi & Rui, Zhenhua & Doranehgard, Mohammad Hossein & Bozorg, Mehdi Vahabzadeh, 2019. "Combustion and emission characteristics of biomass derived biofuel, premixed in a diesel engine: A CFD study," Renewable Energy, Elsevier, vol. 138(C), pages 79-89.
    15. Feng, Jing-Chun & Wang, Yi & Li, Xiao-Sen & Li, Gang & Chen, Zhao-Yang, 2015. "Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells," Energy, Elsevier, vol. 79(C), pages 315-324.
    16. San José, J. & Sanz-Tejedor, M.A. & Arroyo, Y. & Stoychev, P., 2021. "Analysis of vegetable oil mixture combustion in a conventional 50 KW thermal energy installation," Renewable Energy, Elsevier, vol. 164(C), pages 1133-1142.
    17. Xiang-Ru Chen & Xiao-Sen Li & Zhao-Yang Chen & Yu Zhang & Ke-Feng Yan & Qiu-Nan Lv, 2015. "Experimental Investigation into the Combustion Characteristics of Propane Hydrates in Porous Media," Energies, MDPI, vol. 8(2), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    2. Dmitrii Antonov & Olga Gaidukova & Galina Nyashina & Dmitrii Razumov & Pavel Strizhak, 2022. "Prospects of Using Gas Hydrates in Power Plants," Energies, MDPI, vol. 15(12), pages 1-20, June.
    3. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
    4. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    5. Sergey Y. Misyura & Igor G. Donskoy, 2021. "Dissociation and Combustion of a Layer of Methane Hydrate Powder: Ways to Increase the Efficiency of Combustion and Degassing," Energies, MDPI, vol. 14(16), pages 1-16, August.
    6. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    7. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    8. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    9. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    10. Wang, Feiran & Tan, Bo & Gao, Liyang & Huang, Jiliang & Guo, Meiyan & Wang, Haiyan & Fang, Xiyang & Fu, Shuhui & Li, Tianze, 2024. "Research on the mechanism of coal adsorption of CO2 hindering oxygen," Energy, Elsevier, vol. 296(C).
    11. Misyura, S.Y., 2019. "Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation," Energy, Elsevier, vol. 181(C), pages 589-602.
    12. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    13. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
    14. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2024. "Study on the Performance and Emissions of Triple Blends of Diesel/Waste Plastic Oil/Vegetable Oil in a Diesel Engine: Advancing Eco-Friendly Solutions," Energies, MDPI, vol. 17(6), pages 1-17, March.
    15. Aytav, Emre & Kocar, Günnur, 2013. "Biodiesel from the perspective of Turkey: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 335-350.
    16. Mu, Liang & Zhou, Ziqi & Zhao, Huixing & Zhu, Xiaohai & Cui, Qingyan, 2024. "High-efficiency recovery of methane from coal bed gas via hydrate formation in emulsions," Energy, Elsevier, vol. 290(C).
    17. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    18. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    19. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    20. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.