IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v130y2019icp943-951.html
   My bibliography  Save this article

Improving the properties of producer gas using high temperature gasification of rice husk in a pilot scale fluidized bed gasifier (FBG)

Author

Listed:
  • Makwana, Jignesh P.
  • Pandey, Jay
  • Mishra, Gaurav

Abstract

Biomass gasification is a well-studied thermo-chemical conversion route for the generating producer gas, a renewable energy carrier, for thermal and power applications as well as for bio-fuel production. High energy efficiency and clean gaseous fuel with low tar and suspended particulate matters (SPM) contents are some of the major challenges with biomass gasification. Herein, we report non-catalytic high temperature (720–855 °C) gasification of rice husk using fluidized bed gasifier (FBG). Producer gas mainly comprising of CO and H2 exhibited good higher heating value (HHV) and lower heating value (LHV) of 3.6 and 3.2 MJ/Nm3 respectively. Our experimental observations revealed that 790 °C is the optimum temperature for rice husk gasification with high carbon conversion efficiency (91.6%), thermal efficiency (75%) and high gas yield 2.7 m3/kg. High temperature gasification also resulted into reduced tar + SPM content (0.33 g/Nm3). Rice husk derived producer gas with good heating value and low tar + SPM content can be used as replacement of conventional fossil fuels for thermal applications in many processing industries.

Suggested Citation

  • Makwana, Jignesh P. & Pandey, Jay & Mishra, Gaurav, 2019. "Improving the properties of producer gas using high temperature gasification of rice husk in a pilot scale fluidized bed gasifier (FBG)," Renewable Energy, Elsevier, vol. 130(C), pages 943-951.
  • Handle: RePEc:eee:renene:v:130:y:2019:i:c:p:943-951
    DOI: 10.1016/j.renene.2018.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118307961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz, J.A. & Juárez, M.C. & Morales, M.P. & Muñoz, P. & Mendívil, M.A., 2013. "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 174-183.
    2. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shivangi Jha & Sonil Nanda & Bishnu Acharya & Ajay K. Dalai, 2022. "A Review of Thermochemical Conversion of Waste Biomass to Biofuels," Energies, MDPI, vol. 15(17), pages 1-23, August.
    2. Sivabalan Kaniapan & Jagadeesh Pasupuleti & Kartikeyan Patma Nesan & Haris Nalakath Abubackar & Hadiza Aminu Umar & Temidayo Lekan Oladosu & Segun R. Bello & Eldon R. Rene, 2022. "A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
    3. Zhou, Tao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Impact of wide particle size distribution on the gasification performance of biomass in a bubbling fluidized bed gasifier," Renewable Energy, Elsevier, vol. 148(C), pages 534-547.
    4. Bandara, Janitha C. & Jaiswal, Rajan & Nielsen, Henrik K. & Moldestad, Britt M.E. & Eikeland, Marianne S., 2021. "Air gasification of wood chips, wood pellets and grass pellets in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 233(C).
    5. Mallick, Debarshi & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2020. "Co-gasification of biomass blends: Performance evaluation in circulating fluidized bed gasifier," Energy, Elsevier, vol. 192(C).
    6. Ndindeng, Sali Atanga & Wopereis, Marco & Sanyang, Sidi & Futakuchi, Koichi, 2019. "Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa," Renewable Energy, Elsevier, vol. 139(C), pages 924-935.
    7. Donghoon Shin & Akhil Francis & Purushothaman Vellayani Aravind & Theo Woudstra & Wiebren de Jong & Dirk Roekaerts, 2022. "Numerical Evaluation of Biochar Production Performance of Downdraft Gasifier by Thermodynamic Model," Energies, MDPI, vol. 15(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, S. & Kashyap, D. & Kalita, P. & Kulkarni, V. & Itaya, Y., 2020. "Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Benedek, József & Sebestyén, Tihamér-Tibor & Bartók, Blanka, 2018. "Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 516-535.
    3. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    4. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    5. Percy, A. Jemila & Edwin, M., 2023. "Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology," Energy, Elsevier, vol. 263(PA).
    6. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    7. Lin, Chiou-Liang & Chou, Jing-Dong & Iu, Chi-Hou, 2020. "Effects of second-stage bed materials on hydrogen production in the syngas of a two-stage gasification process," Renewable Energy, Elsevier, vol. 154(C), pages 903-912.
    8. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
    9. Šuhaj, Patrik & Husár, Jakub & Haydary, Juma & Annus, Július, 2022. "Experimental verification of a pilot pyrolysis/split product gasification (PSPG) unit," Energy, Elsevier, vol. 244(PA).
    10. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    11. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    12. Souza, Simone Pereira & Nogueira, Luiz Augusto Horta & Martinez, Johan & Cortez, Luis Augusto Barbosa, 2018. "Sugarcane can afford a cleaner energy profile in Latin America & Caribbean," Renewable Energy, Elsevier, vol. 121(C), pages 164-172.
    13. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    14. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    15. Natarajan, Karthikeyan & Latva-Käyrä, Petri & Zyadin, Anas & Pelkonen, Paavo, 2016. "New methodological approach for biomass resource assessment in India using GIS application and land use/land cover (LULC) maps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 256-268.
    16. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    17. Gabriele Calì & Paolo Deiana & Claudia Bassano & Simone Meloni & Enrico Maggio & Michele Mascia & Alberto Pettinau, 2020. "Syngas Production, Clean-Up and Wastewater Management in a Demo-Scale Fixed-Bed Updraft Biomass Gasification Unit," Energies, MDPI, vol. 13(10), pages 1-15, May.
    18. Gaurav Kumar Porichha & Yulin Hu & Kasanneni Tirumala Venkateswara Rao & Chunbao Charles Xu, 2021. "Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy," Energies, MDPI, vol. 14(14), pages 1-17, July.
    19. Natarianto Indrawan & Betty Simkins & Ajay Kumar & Raymond L. Huhnke, 2020. "Economics of Distributed Power Generation via Gasification of Biomass and Municipal Solid Waste," Energies, MDPI, vol. 13(14), pages 1-18, July.
    20. Liu, Haolin & Ye, Chao & Xu, Yousheng & Wang, Qisong, 2022. "Effect of activation conditions and iron loading content on the catalytic cracking of toluene by biochar," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:130:y:2019:i:c:p:943-951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.