IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v192y2020ics0360544219323771.html
   My bibliography  Save this article

Co-gasification of biomass blends: Performance evaluation in circulating fluidized bed gasifier

Author

Listed:
  • Mallick, Debarshi
  • Mahanta, Pinakeswar
  • Moholkar, Vijayanand S.

Abstract

An important aspect of the commercialization of biomass gasifiers is feedstock flexibility. The present study has dealt with performance assessment of a circulating fluidized bed gasifier (50 kWth) with binary blends of three biomasses, sawdust (SD), rice husk (RH) and bamboo dust (BD), as feedstock. The performance of gasification was assessed in respect of the specific yield of producer gas, its LHV, and tar content in addition to gasification efficiencies. Experiments were conducted with varying equivalence ratio (ER) from 0.19 to 0.35, and temperatures of 800°–900 °C. The blending of biomasses resulted in the enhancement of gasification performance due to synergistic effects. Minerals in the ash of RH catalyzed char and tar conversion leading to higher efficiencies. At ER = 0.35, maximum CGE = 62% and CCE = 98% were obtained for RH + BD blend. With increasing temperature, H2, CO content and net yield of producer gas increased with concurrent decreasing in tar. The highest LHV of producer gas (5.05 MJ/Nm3) was obtained for the RH + BD blend at ER = 0.19 and 800 °C. Maximum gas yield (1.72 Nm3/kg dry biomass) and minimum tar content (2.01 g/kg dry biomass) were obtained for SD + BD and RH + BD blends, respectively, at 800 °C and ER = 0.35.

Suggested Citation

  • Mallick, Debarshi & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2020. "Co-gasification of biomass blends: Performance evaluation in circulating fluidized bed gasifier," Energy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323771
    DOI: 10.1016/j.energy.2019.116682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219323771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    2. Sarkar, Madhura & Kumar, Ajay & Tumuluru, Jaya Shankar & Patil, Krushna N. & Bellmer, Danielle D., 2014. "Gasification performance of switchgrass pretreated with torrefaction and densification," Applied Energy, Elsevier, vol. 127(C), pages 194-201.
    3. Alauddin, Zainal Alimuddin Bin Zainal & Lahijani, Pooya & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2010. "Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2852-2862, December.
    4. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko, 2015. "From fossil fuels towards renewables: Inhibitory and catalytic effects on carbon thermochemical conversion during co-gasification of biomass with fossil fuels," Applied Energy, Elsevier, vol. 140(C), pages 196-209.
    5. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    6. Makwana, Jignesh P. & Pandey, Jay & Mishra, Gaurav, 2019. "Improving the properties of producer gas using high temperature gasification of rice husk in a pilot scale fluidized bed gasifier (FBG)," Renewable Energy, Elsevier, vol. 130(C), pages 943-951.
    7. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2008. "Providing electricity access to remote areas in India: An approach towards identifying potential areas for decentralized electricity supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1187-1220, June.
    8. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2007. "Biomass gasifier projects for decentralized power supply in India: A financial evaluation," Energy Policy, Elsevier, vol. 35(2), pages 1373-1385, February.
    9. Sansaniwal, S.K. & Pal, K. & Rosen, M.A. & Tyagi, S.K., 2017. "Recent advances in the development of biomass gasification technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 363-384.
    10. de Jong, Wiebren & Andries, Jans & Hein, Klaus R.G., 1999. "Coal/biomass co-gasification in a pressurised fluidised bed reactor," Renewable Energy, Elsevier, vol. 16(1), pages 1110-1113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Lian & Yixiao Wang & Xiyue Zhang & Abubakar Yusuf & Lord Famiyeh & David Murindababisha & Huan Jin & Yiyang Liu & Jun He & Yunshan Wang & Gang Yang & Yong Sun, 2021. "Hydrogen Production by Fluidized Bed Reactors: A Quantitative Perspective Using the Supervised Machine Learning Approach," J, MDPI, vol. 4(3), pages 1-22, July.
    2. Yang, Shiliang & Liang, Jin & Wang, Shuai & Wang, Hua, 2021. "High-fidelity investigation of thermochemical conversion of biomass material in a full-loop circulating fluidized bed gasifier," Energy, Elsevier, vol. 224(C).
    3. Wan, Zhanghao & Hu, Jianhang & Qi, Xianjin, 2021. "Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed," Energy, Elsevier, vol. 225(C).
    4. Pan, Junting & Shahbeik, Hossein & Shafizadeh, Alireza & Rafiee, Shahin & Golvirdizadeh, Milad & Ghafarian Nia, Seyyed Alireza & Mobli, Hossein & Yang, Yadong & Zhang, Guilong & Tabatabaei, Meisam & A, 2024. "Machine learning optimization for enhanced biomass-coal co-gasification," Renewable Energy, Elsevier, vol. 229(C).
    5. Naqvi, Salman Raza & Naqvi, Muhammad & Ammar Taqvi, Syed Ali & Iqbal, Farukh & Inayat, Abrar & Khoja, Asif Hussain & Mehran, Muhammad Taqi & Ayoub, Muhammad & Shahbaz, Muhammad & Saidina Amin, Nor Ais, 2021. "Agro-industrial residue gasification feasibility in captive power plants: A South-Asian case study," Energy, Elsevier, vol. 214(C).
    6. Roy, Dibyendu, 2023. "Multi-objective optimization of biomass gasification based combined heat and power system employing molten carbonate fuel cell and externally fired gas turbine," Applied Energy, Elsevier, vol. 348(C).
    7. Anand, Amrit & Kachhap, Anju & Gautam, Shalini, 2023. "Synergistic effect of coal and biomass gasification and organo-inorganic elemental impact on gasification performance and product gas," Energy, Elsevier, vol. 282(C).
    8. Cao, Yan & Bai, Yu & Du, Jiang, 2022. "Co-gasification of rice husk and woody biomass blends in a CFB system: A modeling approach," Renewable Energy, Elsevier, vol. 188(C), pages 849-858.
    9. Awais, Muhammad & Omar, Muhammad Mubashar & Munir, Anjum & li, Wei & Ajmal, Muhammad & Hussain, Sajjad & Ahmad, Syed Amjad & Ali, Amjad, 2022. "Co-gasification of different biomass feedstock in a pilot-scale (24 kWe) downdraft gasifier: An experimental approach," Energy, Elsevier, vol. 238(PB).
    10. Kartal, Furkan & Özveren, Uğur, 2020. "A deep learning approach for prediction of syngas lower heating value from CFB gasifier in Aspen plus®," Energy, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    2. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.
    3. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    4. Mehrpooya, Mehdi & Khalili, Maryam & Sharifzadeh, Mohammad Mehdi Moftakhari, 2018. "Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 869-887.
    5. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    6. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    7. Parihar, Amit Kumar Singh & Hammer, Thomas & Sridhar, G., 2015. "Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas," Renewable Energy, Elsevier, vol. 74(C), pages 875-883.
    8. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    9. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    10. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Wei, Juntao & Gong, Yan & Guo, Qinghua & Chen, Xueli & Ding, Lu & Yu, Guangsuo, 2019. "A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals," Renewable Energy, Elsevier, vol. 131(C), pages 597-605.
    12. Parrillo, Francesco & Ardolino, Filomena & Calì, Gabriele & Marotto, Davide & Pettinau, Alberto & Arena, Umberto, 2021. "Fluidized bed gasification of eucalyptus chips: Axial profiles of syngas composition in a pilot scale reactor," Energy, Elsevier, vol. 219(C).
    13. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    14. Monteiro, Eliseu & Ramos, Ana & Rouboa, Abel, 2024. "Fundamental designs of gasification plants for combined heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    15. Narula, Kapil & Nagai, Yu & Pachauri, Shonali, 2012. "The role of Decentralized Distributed Generation in achieving universal rural electrification in South Asia by 2030," Energy Policy, Elsevier, vol. 47(C), pages 345-357.
    16. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    17. Palit, Debajit & Malhotra, Ramit & Kumar, Atul, 2011. "Sustainable model for financial viability of decentralized biomass gasifier based power projects," Energy Policy, Elsevier, vol. 39(9), pages 4893-4901, September.
    18. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2017. "Financial attractiveness of decentralized renewable energy systems – A case of the central Himalayan state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 101(C), pages 973-991.
    19. Parrillo, Francesco & Ardolino, Filomena & Boccia, Carmine & Calì, Gabriele & Marotto, Davide & Pettinau, Alberto & Arena, Umberto, 2023. "Co-gasification of plastics waste and biomass in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 273(C).
    20. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.