IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v153y2020icp93-107.html
   My bibliography  Save this article

Numerical investigation of heat transfer performance of water flowing through a reservoir with two intersecting fractures

Author

Listed:
  • Ma, Yueqiang
  • Zhang, Yanjun
  • Hu, Zhongjun
  • Yu, Ziwang
  • Zhou, Ling
  • Huang, Yibin

Abstract

Understanding the water flow and heat transfer process in rock fractures is crucial for the development and utilization of geothermal reservoirs. This study develops a numerical model of a granite reservoir with two intersecting fractures to evaluate the heat production performance. Then, the evolution of the distribution of the rock and fluid temperatures is investigated. In addition, the effect of the injection temperature, heat transfer coefficient and injection flow velocity on the heat transfer characteristics are analyzed. Additionally, in order to study heat transfer performance with different fracture distributions, four cases of intersecting fractures with different angles are designed. The results indicate that, at different locations along the direction of seepage, the water temperature changes with time follow different rules. The results also show that, when the distribution of fractures is more uniform in the reservoir, the heat extraction rate of flowing water from the surrounding reservoir is faster. These results provided theoretical basis for geothermal system location selection, optimal selection of the reservoir stimulation scheme and reservoir thermal output prediction.

Suggested Citation

  • Ma, Yueqiang & Zhang, Yanjun & Hu, Zhongjun & Yu, Ziwang & Zhou, Ling & Huang, Yibin, 2020. "Numerical investigation of heat transfer performance of water flowing through a reservoir with two intersecting fractures," Renewable Energy, Elsevier, vol. 153(C), pages 93-107.
  • Handle: RePEc:eee:renene:v:153:y:2020:i:c:p:93-107
    DOI: 10.1016/j.renene.2020.01.141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120301634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yibin & Zhang, Yanjun & Yu, Ziwang & Ma, Yueqiang & Zhang, Chi, 2019. "Experimental investigation of seepage and heat transfer in rough fractures for enhanced geothermal systems," Renewable Energy, Elsevier, vol. 135(C), pages 846-855.
    2. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    3. Li, Zheng-Wei & Feng, Xia-Ting & Zhang, Yan-Jun & Zhang, Chi & Xu, Tian-Fu & Wang, Yun-Sen, 2017. "Experimental research on the convection heat transfer characteristics of distilled water in manmade smooth and rough rock fractures," Energy, Elsevier, vol. 133(C), pages 206-218.
    4. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Sensitivity analysis of deep geothermal reservoir: Effect of reservoir parameters on production temperature," Energy, Elsevier, vol. 129(C), pages 101-113.
    5. Zeng, Yuchao & Tang, Liansheng & Wu, Nengyou & Cao, Yifei, 2017. "Analysis of influencing factors of production performance of enhanced geothermal system: A case study at Yangbajing geothermal field," Energy, Elsevier, vol. 127(C), pages 218-235.
    6. Lei, Zhihong & Zhang, Yanjun & Yu, Ziwang & Hu, Zhongjun & Li, Liangzhen & Zhang, Senqi & Fu, Lei & Zhou, Ling & Xie, Yangyang, 2019. "Exploratory research into the enhanced geothermal system power generation project: The Qiabuqia geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 139(C), pages 52-70.
    7. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Optimum control parameters and long-term productivity of geothermal reservoirs using coupled thermo-hydraulic process modelling," Renewable Energy, Elsevier, vol. 112(C), pages 151-165.
    8. Abbasi, Mahdi & Mansouri, Mehrshad & Daryasafar, Amin & Sharifi, Mohammad, 2019. "Analytical model for heat transfer between vertical fractures in fractured geothermal reservoirs during water injection," Renewable Energy, Elsevier, vol. 130(C), pages 73-86.
    9. Lacirignola, Martino & Blanc, Isabelle, 2013. "Environmental analysis of practical design options for enhanced geothermal systems (EGS) through life-cycle assessment," Renewable Energy, Elsevier, vol. 50(C), pages 901-914.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhipeng & Ning, Zhengfu & Guo, Wenting & Zhan, Jie & Zhang, Yuanxin, 2024. "Study of fracture monitoring and heat extraction evaluation in geothermal reservoir modified by abandoned well pattern: Numerical models and case studies," Energy, Elsevier, vol. 296(C).
    2. He, Renhui & Rong, Guan & Tan, Jie & Phoon, Kok-Kwang & Quan, Junsong, 2022. "Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures," Renewable Energy, Elsevier, vol. 188(C), pages 524-544.
    3. Yu, Ziwang & Ye, Xiaoqi & Zhang, Yanjun & Gao, Ping & Huang, Yibin, 2023. "Experimental research on the thermal conductivity of unsaturated rocks in geothermal engineering," Energy, Elsevier, vol. 282(C).
    4. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Renhui & Rong, Guan & Tan, Jie & Phoon, Kok-Kwang & Quan, Junsong, 2022. "Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures," Renewable Energy, Elsevier, vol. 188(C), pages 524-544.
    2. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.
    3. Heinze, Thomas, 2021. "Constraining the heat transfer coefficient of rock fractures," Renewable Energy, Elsevier, vol. 177(C), pages 433-447.
    4. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    5. Zhang, Jiansong & Liu, Yongsheng & Lv, Jianguo & Gao, Wenlong, 2024. "The flow and heat transfer characteristics of supercritical mixed-phase CO2 and N2 in a 3D self-affine rough fracture," Energy, Elsevier, vol. 303(C).
    6. Song, Guofeng & Song, Xianzhi & Ji, Jiayan & Wu, Xiaoguang & Li, Gensheng & Xu, Fuqiang & Shi, Yu & Wang, Gaosheng, 2022. "Evolution of fracture aperture and thermal productivity influenced by chemical reaction in enhanced geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 126-142.
    7. Zhang, Yanjun & Ma, Yueqiang & Hu, Zhongjun & Lei, Honglei & Bai, Lin & Lei, Zhihong & Zhang, Qian, 2019. "An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite," Renewable Energy, Elsevier, vol. 140(C), pages 615-624.
    8. Song, Guofeng & Song, Xianzhi & Li, Gensheng & Shi, Yu & Wang, Gaosheng & Ji, Jiayan & Xu, Fuqiang & Song, Zihao, 2021. "An integrated multi-objective optimization method to improve the performance of multilateral-well geothermal system," Renewable Energy, Elsevier, vol. 172(C), pages 1233-1249.
    9. Gudala, Manojkumar & Govindarajan, Suresh Kumar & Yan, Bicheng & Sun, Shuyu, 2022. "Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling," Energy, Elsevier, vol. 253(C).
    10. Zhang, Chao & Jiang, Guangzheng & Jia, Xiaofeng & Li, Shengtao & Zhang, Shengsheng & Hu, Di & Hu, Shengbiao & Wang, Yibo, 2019. "Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau," Renewable Energy, Elsevier, vol. 132(C), pages 959-978.
    11. Liang, Xu & Xu, Tianfu & Feng, Bo & Jiang, Zhenjiao, 2018. "Optimization of heat extraction strategies in fault-controlled hydro-geothermal reservoirs," Energy, Elsevier, vol. 164(C), pages 853-870.
    12. Aliyu, Musa D. & Chen, Hua-Peng, 2018. "Enhanced geothermal system modelling with multiple pore media: Thermo-hydraulic coupled processes," Energy, Elsevier, vol. 165(PA), pages 931-948.
    13. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    14. Ding, Junfeng & Wang, Shimin, 2018. "2D modeling of well array operating enhanced geothermal system," Energy, Elsevier, vol. 162(C), pages 918-932.
    15. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    16. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    17. Gkousis, Spiros & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Deep geothermal energy extraction, a review on environmental hotspots with focus on geo-technical site conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Anna Wachowicz-Pyzik & Anna Sowiżdżał & Leszek Pająk & Paweł Ziółkowski & Janusz Badur, 2020. "Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis‒Case Study from Poland (Szczecin Trough)," Energies, MDPI, vol. 13(9), pages 1-20, May.
    19. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    20. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2023. "Numerical simulation study of intermittent heat extraction from hot dry rock using horizontal well based on thermal compensation," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:153:y:2020:i:c:p:93-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.