IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v152y2020icp713-723.html
   My bibliography  Save this article

Stratified rock hydraulic fracturing for enhanced geothermal system and fracture geometry evaluation via effective length

Author

Listed:
  • Yu, Likui
  • Wu, Xiaotian
  • Wang, Yadan
  • Ma, Weiwu
  • Liu, Gang

Abstract

Rock stratification and anisotropy extensively exist in geothermal reservoir, and have great effects on the results of hot dry rock hydraulic fracturing. Therefore, the understanding of fracturing mechanism is critical to successfully building an engineered reservoir with high permeability for enhanced geothermal system. Some previous researchers have attempted to reveal hydraulic fracturing process of stratified rock, but the rock hydraulic fracturing propagation and fracture quality evaluation are still not clear enough. We established a numerical model to study the propagation of non-planar fractures in stratified rock by using extended finite element method. For fracture quality evaluation, we proposed fracture effective length as an index, which is the length of the segment where fracture width greater than 1 mm, considering the volume of sand within injected proppant. It is found that fractures generated from stratified rock is more conducive to heat extraction process. A large in-situ stress difference is more conducive to an increase in the fracture effective length. The methodology and results would guide the perforation location selection for stractified rock hydraulic fracturing process to achieve a reasonable fracture morphology.

Suggested Citation

  • Yu, Likui & Wu, Xiaotian & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Stratified rock hydraulic fracturing for enhanced geothermal system and fracture geometry evaluation via effective length," Renewable Energy, Elsevier, vol. 152(C), pages 713-723.
  • Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:713-723
    DOI: 10.1016/j.renene.2020.01.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120301191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.
    2. Guo, Liang-Liang & Zhang, Yong-Bo & Zhang, Yan-Jun & Yu, Zi-Wang & Zhang, Jia-Ning, 2018. "Experimental investigation of granite properties under different temperatures and pressures and numerical analysis of damage effect in enhanced geothermal system," Renewable Energy, Elsevier, vol. 126(C), pages 107-125.
    3. Slatlem Vik, Hedda & Salimzadeh, Saeed & Nick, Hamidreza M., 2018. "Heat recovery from multiple-fracture enhanced geothermal systems: The effect of thermoelastic fracture interactions," Renewable Energy, Elsevier, vol. 121(C), pages 606-622.
    4. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & Li, Jiacheng & Geng, Lidong & Li, Xiaojiang, 2019. "Numerical study on heat extraction performance of a multilateral-well enhanced geothermal system considering complex hydraulic and natural fractures," Renewable Energy, Elsevier, vol. 141(C), pages 950-963.
    5. Li, Min & Zhang, Liwen & Liu, Gang, 2019. "Estimation of thermal properties of soil and backfilling material from thermal response tests (TRTs) for exploiting shallow geothermal energy: Sensitivity, identifiability, and uncertainty," Renewable Energy, Elsevier, vol. 132(C), pages 1263-1270.
    6. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & McLennan, John & Forbes, Bryan & Li, Xiaojiang & Li, Jiacheng, 2019. "Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system," Applied Energy, Elsevier, vol. 249(C), pages 14-27.
    7. Salimzadeh, S. & Grandahl, M. & Medetbekova, M. & Nick, H.M., 2019. "A novel radial jet drilling stimulation technique for enhancing heat recovery from fractured geothermal reservoirs," Renewable Energy, Elsevier, vol. 139(C), pages 395-409.
    8. Sun, Zhi-xue & Zhang, Xu & Xu, Yi & Yao, Jun & Wang, Hao-xuan & Lv, Shuhuan & Sun, Zhi-lei & Huang, Yong & Cai, Ming-yu & Huang, Xiaoxue, 2017. "Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model," Energy, Elsevier, vol. 120(C), pages 20-33.
    9. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Optimum control parameters and long-term productivity of geothermal reservoirs using coupled thermo-hydraulic process modelling," Renewable Energy, Elsevier, vol. 112(C), pages 151-165.
    10. Xu, Chaoshui & Dowd, Peter Alan & Tian, Zhao Feng, 2015. "A simplified coupled hydro-thermal model for enhanced geothermal systems," Applied Energy, Elsevier, vol. 140(C), pages 135-145.
    11. Liu, Guihong & Pu, Hai & Zhao, Zhihong & Liu, Yanguang, 2019. "Coupled thermo-hydro-mechanical modeling on well pairs in heterogeneous porous geothermal reservoirs," Energy, Elsevier, vol. 171(C), pages 631-653.
    12. Haraden, John, 1992. "The status of hot dry rock as an energy source," Energy, Elsevier, vol. 17(8), pages 777-786.
    13. Li, Sanbai & Feng, Xia-Ting & Zhang, Dongxiao & Tang, Huiying, 2019. "Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs," Applied Energy, Elsevier, vol. 247(C), pages 40-59.
    14. Feng, Zijun & Zhao, Yangsheng & Zhou, Anchao & Zhang, Ning, 2012. "Development program of hot dry rock geothermal resource in the Yangbajing Basin of China," Renewable Energy, Elsevier, vol. 39(1), pages 490-495.
    15. Zhang, Yanjun & Ma, Yueqiang & Hu, Zhongjun & Lei, Honglei & Bai, Lin & Lei, Zhihong & Zhang, Qian, 2019. "An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite," Renewable Energy, Elsevier, vol. 140(C), pages 615-624.
    16. Asai, Pranay & Panja, Palash & McLennan, John & Moore, Joseph, 2019. "Efficient workflow for simulation of multifractured enhanced geothermal systems (EGS)," Renewable Energy, Elsevier, vol. 131(C), pages 763-777.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anand, R.S. & Li, Ang & Huang, Wenbo & Chen, Juanwen & Li, Zhibin & Ma, Qingshan & Jiang, Fangming, 2024. "Super-long gravity heat pipe for geothermal energy exploitation - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    2. Feng, Chenchen & Wang, Huaijiu & Jing, Zefeng, 2021. "Investigation of heat extraction with flowing CO2 from hot dry rock by numerical study," Renewable Energy, Elsevier, vol. 169(C), pages 242-253.
    3. Wang, Ling & Jiang, Zhenjiao & Li, Chengying, 2023. "Comparative study on effects of macroscopic and microscopic fracture structures on the performance of enhanced geothermal systems," Energy, Elsevier, vol. 274(C).
    4. Zhou, Chunwei & Liu, Gang & Liao, Shengming, 2024. "Probing dominant flow paths in enhanced geothermal systems with a genetic algorithm inversion model," Applied Energy, Elsevier, vol. 360(C).
    5. Yu, Likui & Wu, Xiaotian & Hassan, N.M.S. & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Modified zipper fracturing in enhanced geothermal system reservoir and heat extraction optimization via orthogonal design," Renewable Energy, Elsevier, vol. 161(C), pages 373-385.
    6. Chao Yin & Wenbo Tian & Fa Che & Bing Guo & Shaoping Wang & Zhirong Jia, 2023. "Model tests and numerical simulations on hydraulic fracturing and failure mechanism of rock landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1977-1996, February.
    7. Wu, Xiaotian & Yu, Likui & Hassan, N.M.S. & Ma, Weiwu & Liu, Gang, 2021. "Evaluation and optimization of heat extraction in enhanced geothermal system via failure area percentage," Renewable Energy, Elsevier, vol. 169(C), pages 204-220.
    8. Liu, Gang & Zhou, Chunwei & Rao, Zhenghua & Liao, Shengming, 2021. "Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems," Renewable Energy, Elsevier, vol. 171(C), pages 492-504.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Likui & Wu, Xiaotian & Hassan, N.M.S. & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Modified zipper fracturing in enhanced geothermal system reservoir and heat extraction optimization via orthogonal design," Renewable Energy, Elsevier, vol. 161(C), pages 373-385.
    2. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    3. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    4. Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
    5. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    6. Wu, Xiaotian & Yu, Likui & Hassan, N.M.S. & Ma, Weiwu & Liu, Gang, 2021. "Evaluation and optimization of heat extraction in enhanced geothermal system via failure area percentage," Renewable Energy, Elsevier, vol. 169(C), pages 204-220.
    7. Wang, Gaosheng & Song, Xianzhi & Yu, Chao & Shi, Yu & Song, Guofeng & Xu, Fuqiang & Ji, Jiayan & Song, Zihao, 2022. "Heat extraction study of a novel hydrothermal open-loop geothermal system in a multi-lateral horizontal well," Energy, Elsevier, vol. 242(C).
    8. Gao, Xuefeng & Zhang, Yanjun & Huang, Yibin & Ma, Yongjie & Zhao, Yi & Liu, Qiangbin, 2021. "Study on heat extraction considering the number and orientation of multilateral wells in a complex fractured geothermal reservoir," Renewable Energy, Elsevier, vol. 177(C), pages 833-852.
    9. He, Renhui & Rong, Guan & Tan, Jie & Phoon, Kok-Kwang & Quan, Junsong, 2022. "Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures," Renewable Energy, Elsevier, vol. 188(C), pages 524-544.
    10. Liao, Jianxing & Hu, Ke & Mehmood, Faisal & Xu, Bin & Teng, Yuhang & Wang, Hong & Hou, Zhengmeng & Xie, Yachen, 2023. "Embedded discrete fracture network method for numerical estimation of long-term performance of CO2-EGS under THM coupled framework," Energy, Elsevier, vol. 285(C).
    11. Liu, Gang & Zhou, Chunwei & Rao, Zhenghua & Liao, Shengming, 2021. "Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems," Renewable Energy, Elsevier, vol. 171(C), pages 492-504.
    12. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    13. Gao, Xiang & Li, Tailu, 2022. "Synergetic characteristics of three-dimensional transient heat transfer in geothermal reservoir combined with power conversion for enhanced geothermal system," Renewable Energy, Elsevier, vol. 192(C), pages 216-230.
    14. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    15. Mahmoodpour, Saeed & Singh, Mrityunjay & Turan, Aysegul & Bär, Kristian & Sass, Ingo, 2022. "Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir," Energy, Elsevier, vol. 247(C).
    16. Xin-Yue Duan & Di Huang & Wen-Xian Lei & Shi-Chao Chen & Zhao-Qin Huang & Chuan-Yong Zhu, 2023. "Investigation of Heat Extraction in an Enhanced Geothermal System Embedded with Fracture Networks Using the Thermal–Hydraulic–Mechanical Coupling Model," Energies, MDPI, vol. 16(9), pages 1-19, April.
    17. Ma, Weiwu & Wang, Yadan & Wu, Xiaotian & Liu, Gang, 2020. "Hot dry rock (HDR) hydraulic fracturing propagation and impact factors assessment via sensitivity indicator," Renewable Energy, Elsevier, vol. 146(C), pages 2716-2723.
    18. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    19. Song, Guofeng & Song, Xianzhi & Ji, Jiayan & Wu, Xiaoguang & Li, Gensheng & Xu, Fuqiang & Shi, Yu & Wang, Gaosheng, 2022. "Evolution of fracture aperture and thermal productivity influenced by chemical reaction in enhanced geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 126-142.
    20. Li, Jiawei & Sun, Zhixue & Zhang, Yin & Jiang, Chuanyin & Cherubini, Claudia & Scheuermann, Alexander & Torres, Sergio Andres Galindo & Li, Ling, 2019. "Investigations of heat extraction for water and CO2 flow based on the rough-walled discrete fracture network," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:713-723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.